Ultraviolet (UV) radiation present in sunlight plays a critical role in the initiation and promotion of nonmelanoma skin carcinogenesis and immune suppression. The immune suppressive effects of UV have been identified as a risk factor for skin cancer induction. For these reasons, scientists have focused on elucidating the mechanisms of UV-induced immune suppression to better understand the pathogenesis of skin cancer induction. A hallmark of UV-induced immune suppression is the generation of antigen-specific suppressor T cells. These suppressor cells have been shown to suppress antitumor immunity as well as other cell-mediated responses such as delayed-type hypersensitivity (DTH) reactions. Due to the excessive cost and time involved in traditional UV carcinogenic experiments, scientists have opted to use UV-induced suppression of DTH reactions as a surrogate model. DTH has been, and continues to be, a widely used assay system to measure in vivo immune function. Although somewhat unsophisticated by today's standards, this assay has great advantages because it presents a fast, inexpensive, and reliable model system to help dissect the mechanisms involved in UV-induced immune suppression. Furthermore, the murine model of DTH enables scientists to perform additional procedures, such as adoptive transfer studies with suppressor T cells, which are currently unavailable with human subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1046-2023(02)00207-4DOI Listing

Publication Analysis

Top Keywords

immune suppression
16
uv-induced immune
12
suppressor cells
12
delayed-type hypersensitivity
8
skin cancer
8
cancer induction
8
dth reactions
8
model dth
8
immune
6
suppression
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!