In this study we investigate the efficacy of lentiviral vectors of different pseudotypes for gene transfer to tissues of the preimmune fetus. BALB/c fetuses at 14-15 days' gestation received lentiviral vectors carrying the transgene lacZ under the control of the human cytomegalovirus (CMV) promoter by intramuscular (i.m.) or intrahepatic (i.h.) injection. We pseudotyped the lentiviral vectors with vesicular stomatitis virus (VSV-G), with Mokola virus, or with Ebola virus envelope glycoproteins. We harvested the pups at time points between 5 days and 9 months following injection and performed a detailed histologic assessment. The efficiency and distribution of transduction after in utero administration was highly dependent upon the route of administration and the pseudotype of vector used. Biodistribution studies showed widespread distribution of vector sequences in multiple tissues, albeit at very low levels, and transduced cells were found in significant numbers only in liver, heart, and muscle. Overall, VSV-G was the most efficient in transducing hepatocytes, whereas Mokola and Ebola were more efficient in transducing myocytes. Transduction of cardiomyocytes was observed after both i.m. and i.h. injection of all three vectors. Our findings of long-term transduction of skeletal myocytes and cardiomyocytes after in utero administration suggest a novel strategy for the treatment of congenital muscular dystrophies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/mthe.2002.0681 | DOI Listing |
Phytomedicine
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China. Electronic address:
Background: Renal tubular injury was a significant pathological change of diabetic kidney disease (DKD), and the amelioration of renal tubular injury through mitochondrial function was an important treatment strategy of DKD. Our previous study had revealed that Jujuboside A (Ju A), the main active substance isolated from Semen Ziziphi Spinosae (SZS), could restore renal function of diabetic mice. However, its protective mechanism against DKD remains unclear.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and siRNA-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection.
View Article and Find Full Text PDFJ Occup Environ Med
January 2025
Department of Occupational and Environmental Health, University of California Irvine, Irvine, CA 92697, USA.
J Occup Environ Med
January 2025
National Clinician Consultation Center, Department of Family and Community Medicine, University of California San Francisco.
Invest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!