Heme oxygenase-1 (HO-1) is an inducible enzyme that degrades heme to carbon monoxide, iron ions, and biliverdin. Its expression can be induced by 15-deoxy-Delta(12,14)prostaglandin-J(2) (15d-PGJ(2)), a natural ligand of peroxisome proliferator-activated receptor-gamma transcription factor. In macrophages and vascular smooth muscle cells, 15d-PGJ(2) up-regulates the expression of vascular endothelial growth factor (VEGF), a fundamental regulator of angiogenesis. Here we investigated the involvement of HO-1 in the 15d-PGJ(2)-mediated regulation of VEGF production by human microvascular endothelial cells (HMEC-1). Resting HMEC-1 released approximately 20 pg/ml VEGF protein after 24 h of incubation. Treatment of cells with 15d-PGJ(2) (1-10 microM) significantly and dose-dependently increased the VEGF promoter activity, mRNA expression, and protein secretion. In the same cells, 15d-PGJ(2) potently induced the expression of HO-1 protein that correlated with HO-1 promoter activity. Activation of HO-1 with hemin or ectopic overexpression of HO-1 in HMEC-1 perfectly mimicked the effect of 15d-PGJ(2) and led to increased VEGF production. Importantly, the inhibition of the HO-1 pathway by tin protoporphyrin-IX significantly reduced the stimulatory effect of 15d-PGJ(2) on VEGF synthesis. Thus, we postulate that the up-regulation of VEGF expression in response to 15d-PGJ(2 )in HMEC-1 is mediated by the activation of HO-1.

Download full-text PDF

Source
http://dx.doi.org/10.1089/15230860260220076DOI Listing

Publication Analysis

Top Keywords

cells 15d-pgj2
12
vegf synthesis
8
heme oxygenase-1
8
ho-1
8
vegf production
8
increased vegf
8
promoter activity
8
activation ho-1
8
15d-pgj2
7
vegf
7

Similar Publications

Lung adenocarcinoma (LUAD) is a widespread and deadly form of cancer. Prostaglandin 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) possesses antioxidant, anti-inflammatory, and anticancer properties. However, it is unclear whether this effect on LUAD progression stems from its ability to influence macrophage polarization.

View Article and Find Full Text PDF

Psoriasis is characterized by excessive exfoliation of the epidermal layer due to enhanced pro-inflammatory signaling and hyperproliferation of keratinocytes, further modulated by UV-based anti-psoriatic treatments. Consequently, this study aimed to evaluate the impact of a lipid extract derived from the microalgae on the proteomic alterations induced by lipid derivatives in non-irradiated and UVB-irradiated keratinocytes from psoriatic skin lesions compared to keratinocytes from healthy individuals. The findings revealed that the microalgae extract diminished the viability of psoriatic keratinocytes without affecting the viability of these cells following UVB exposure.

View Article and Find Full Text PDF

Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration.

View Article and Find Full Text PDF

Exposure to fine particulate matter (PM2.5) has been associated with the development and progression of renal disease. Peroxisome proliferator-activated receptor gamma (PPARγ), a key transcription factor involved in inflammation as well as lipid and glucose metabolism, helps maintain the integrity of tubular epithelial cells.

View Article and Find Full Text PDF

UVA radiation leads to oxidative stress and inflammation in skin cells. Therefore, the aim of this study was to compare the effect of lipid extracts from microalgae () (marine) and () (freshwater) on the redox balance and PUFA metabolism in human skin fibroblasts modified by UVA. Lipid extracts from both types of microalgae introduced into the fibroblast medium after UVA irradiation significantly reduced the level of ROS and enhanced expression of Nrf2, which increased the activity/level of antioxidants (SOD1/2, CAT, GSH, Trx).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!