It has been suggested that bacteriophages can provide useful information about the pathogenic microorganisms, particularly enteric viruses, present in water. This information is complementary to that obtained from bacterial indicators of faecal contamination, which would be of great value for evaluating the risks associated with the use of certain types of water. Before bacteriophages can be used as indicators of faecal contamination, we need to confirm that bacteriophages give a different response to that given by the well-known bacteria indicators and to determine what happens to bacteriophages in river water. Indeed, drinking water is often produced from river water, either by natural filtration through the soil or after undergoing various treatments. We collected 96 river water samples from six different sites between February and November 2000. The samples were analysed for three faecal indicator bacteria (thermotolerant coliforms, enterococci and spores of sulphite-reducing anaerobes) and three types of bacteriophages (somatic coliphages, F-specific phages and Bacteroides fragilis phages). The densities of thermotolerant coliforms and enterococci depended mainly on physical factors such as flow rate and water temperature. High temperature and low flow rate led to a decrease in the density of these microorganisms, especially in the absence of a major input of faecal pollution. Conversely, the densities of somatic coliphages, F-specific phages and spores of sulphite-reducing anaerobes remained constant regardless of the flow rate and temperature. The density of Bacteroides fragilis phages was too low for unambiguous determination of their fate in river water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(02)00063-5 | DOI Listing |
Science
January 2025
Department of Geoinformatics, University of Kashmir, Srinagar, India.
On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.
View Article and Find Full Text PDFPLoS One
January 2025
Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, Universität Kassel, Kassel, Germany.
Sand, shaping both natural waterways and urban infrastructure, has recently seen a major surge in extraction, particularly in rapidly urbanizing regions like West Africa. To assess the organization, quantification, and socio-ecological implications of sand mining around Mali's capital Bamako, we employed a mixed methods approach including structured and unstructured interviews, truck counts, turbidity analyses, and river depth measurements. Our study identified five artisanal systems for mining sand and gravel from the Niger River, using tied-up pirogues, single pirogues, carts, tractors, and trucks.
View Article and Find Full Text PDFJ Water Health
January 2025
Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.
View Article and Find Full Text PDFFront Toxicol
January 2025
Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
Plastics are globally considered a significant threat, particularly to metropolitan areas, due to the extensive use of plastic products. This research is the first of its kind to document microplastics contamination and its effects on Red wettled lapwing (Vanellus indicus). The concentration of microplastics (MPs) was measured from surface water at different locations including canals and drains, which are the primary sources of MPs pollution in the metropolitan city Lahore, Pakistan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!