This work is concerned with the effects of coagulation processes with two different coagulants (polyaluminum chloride (PACl) and Al2(SO4)3) on aldehydes formation during oxidation with common oxidants (ozone, chlorine and chlorine dioxide) in a particular groundwater source in Northern Banat region, Yugoslavia. Aldehydes concentrations in coagulated water were lower than in raw water. In contrast, obtained results showed that specific contents of these disinfection byproducts (microg mg(-1) TOC) showed an increase after coagulation processes in a number of samples. Results indicate that the choice of the coagulant-oxidant combination may be important as well as the type of filtration bed, retention time, and filter washing regime in the removal of aldehydes from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(01)00111-7 | DOI Listing |
Sci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFMolecules
January 2025
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Expert Medical Analysis Group, Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain.
The COVID-19 pandemic has accelerated advances in molecular biology and virology, enabling the identification of key biomarkers to differentiate between severe and mild cases. Furthermore, the use of artificial intelligence (AI) and machine learning (ML) to analyze large datasets has been crucial for rapidly identifying relevant biomarkers for disease prognosis, including COVID-19. This approach enhances diagnostics in emergency settings, allowing for more accurate and efficient patient management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!