Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of metal ions (Fe2+, Cu2+, Zn2+) on the hepatoprotective activity of epigallocatechin gallate (EGCG) against hepatotoxin-induced cell injury was investigated. Primary cultures of rat hepatocytes were treated with a well-known hepatotoxin, bromobenzene (BB), in the presence of EGCG only or EGCG plus each metal ion. After 24 h, 0.02 mM EGCG did not show protective activity on the cultured hepatocytes. In contrast, the hepatocytes were protected against BB in the presence of 0.02 mM EGCG and 0.02 mM zinc. The addition of only zinc could not protect hepatocytes against BB. These results suggest that the formation of the zinc-EGCG complex is very important in the enhancement of the hepatoprotective activity of EGCG. The complexation of EGCG with zinc was confirmed by UV-VIS absorption spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.25.1156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!