In spinach (Spinacia oleracea L.), choline is synthesized by the sequential N-methylation of phosphoethanolamine -> phosphomono- -> phosphodi- -> phosphotrimethylethanolamine (i.e. phosphocholine) followed by hydrolysis to release choline. Differential centrifugation of spinach leaf extracts shows that enzymes catalyzing the three N-methylations are cytosolic. These enzymes were assayed in leaf extracts prepared from plants growing under various light/dark periods. Under a diurnal, 8-h light/16-h dark photoperiod, the activity of the enzyme catalyzing the N-methylation of phosphoethanolamine is highest at the end of the light period and lowest following the dark period. Prolonged dark periods (exceeding 16 h) lead to a further reduction in the activity of this enzyme, although activity is restored when plants are reexposed to light. In contrast, the activity of the enzyme(s) catalyzing the N-methylations of phosphomono- and phosphodimethylethanolamine does not undergo comparable changes in response to light/dark treatments. Salt shock of plants with 200 mM NaCl results in a 2-fold increase in all three N-methylation activities relative to nonsalinized controls but only in plants exposed to light. Thus, light is required for the salt-responsive up-regulation of choline synthesis in spinach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC161412PMC
http://dx.doi.org/10.1104/pp.109.3.1085DOI Listing

Publication Analysis

Top Keywords

choline synthesis
8
synthesis spinach
8
n-methylation phosphoethanolamine
8
leaf extracts
8
enzymes catalyzing
8
activity enzyme
8
light
5
enzymes
4
enzymes choline
4
spinach
4

Similar Publications

Introduction: Liver cirrhosis (LC) and hepatocellular carcinoma (HCC) resulting from chronic hepatitis B virus (HBV) infection are major health concerns. Identifying critical biomarkers and molecular targets is needed for early diagnosis, prognosis, and therapy of these diseases.

Methods: In this study, we explored the gene expression and metabolism in the liver tissues of LC, HCC, and healthy controls, to analyse and identify potential biomarkers of disease progression.

View Article and Find Full Text PDF

Sappanone A alleviates metabolic dysfunction-associated steatohepatitis by decreasing hepatocyte lipotoxicity via targeting Mup3 in mice.

Phytomedicine

December 2024

Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China. Electronic address:

Background And Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory lipotoxic disorder marked by hepatic steatosis, hepatocyte damage, inflammation, and varying stages of fibrosis. Sappanone A (SA), a flavonoid, exhibits anti-inflammatory and hepatoprotection activities. Nevertheless, the effects of SA on MASH remain ambiguous.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Background: The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD.

Methods: A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants.

View Article and Find Full Text PDF

Ratiometric fluorescent probe and smartphone-based visual recognition for HO and organophosphorus pesticide based on Ce/Ce cascade enzyme reaction.

Food Chem

December 2024

Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:

Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!