Photosystem II electron transfer, charge stabilization, and photoinhibition were studied in three site-specific mutants of the D1 polypeptide of Synechocystis PCC 6803: E243K, E229D, and CA1 (deletion of three glutamates 242-244 and a substitution, glutamine-241 to histidine). The phenotypes of the E229D and E243K mutants were similar to that of the control strain (AR) in all of the studied aspects. The characteristics of CA1 were very different. Formate, which inhibits the QA- to QB- reaction, was severalfold less effective in CA1 than in AR. The S2QA- and S2QB- states were stabilized in CA1. It was previously shown that the electron transfer between QA- and QB was modified in CA1 (P Maenpaa, T. Kallio, P. Mulo, G. Salih, E.-M. Aro, E. Tyystjarvi, C. Jansson [1993] Plant Mol Biol 22: 1-12). A change in the redox potential of the QA/QA- couple, which renders the reoxidation of QA- by back or forward reactions more difficult, could explain the phenotype of CA1. Although the rates of photoinhibition measured as inhibition of oxygen evolution, Chl fluorescence quenching, and decrease of thermoluminescence B and Q bands were similar in AR and CA1, the CA1 strain more quickly reached a state from which the cells were unable to recover their activity. The results described in this paper suggest that a modification in the structure of the D-de loop of D1 could influence the properties of the couple QA/QA- in D2 and the mechanism of recovery from photoinhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC161184 | PMC |
http://dx.doi.org/10.1104/pp.107.1.187 | DOI Listing |
Proc Natl Acad Sci U S A
March 2017
Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic;
The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O and HO are involved in the photoinhibitory process.
View Article and Find Full Text PDFJ Bone Miner Res
June 2011
Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
Bone morphogenetic proteins (BMPs) exert an important role in skeletal development, adult bone homeostasis, and fracture healing and have demonstrated clinical utility for bone regeneration. However, BMPs fall short as regenerative agents because high doses need to be used to obtain therapeutic effects. Determining the molecular mechanisms controlling BMP-induced bone formation may lead to the development of more effective BMP-based therapies.
View Article and Find Full Text PDFBiochemistry
November 2005
Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany.
In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration.
View Article and Find Full Text PDFPlant Physiol
January 1995
Department of Biology, University of Turku, SF-20500 Turku, Finland (P.M., E.T., T.T.).
Photosystem II electron transfer, charge stabilization, and photoinhibition were studied in three site-specific mutants of the D1 polypeptide of Synechocystis PCC 6803: E243K, E229D, and CA1 (deletion of three glutamates 242-244 and a substitution, glutamine-241 to histidine). The phenotypes of the E229D and E243K mutants were similar to that of the control strain (AR) in all of the studied aspects. The characteristics of CA1 were very different.
View Article and Find Full Text PDFJ Mol Biol
August 1994
Unité de Génétique, Facultés Universitaires N-D de la Paix, Namur, Belgium.
Biogenesis of cytoplasmic ribosomes universally involves methylation of ribosomal RNA. Little genetic evidence is available about the functional role(s) of this conserved posttranscriptional modification. The only known methylase gene involved in rRNA maturation is ksgA in Escherichia coli, which directs dimethylation of two adjacent adenosines (m6(2)A1518m6(2)A1519) in the loop of a conserved hairpin near the 3'-end of 16 S rRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!