Organic compound adsorption on Au(111): simultaneous SHG/electrochemical studies.

Faraday Discuss

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.

Published: September 2002

Camphor has attracted considerable attention in electrochemical research because it adsorbs strongly on metal surfaces. Due to its surface activity it is able to inhibit surface reactions. Recently, camphor has been used in investigations of nonlinear surface dynamics and pattern formation. Details regarding its influence on the morphology of the metal surface, the significance of surface reconstruction, structural changes in the camphor adlayer and oxide formation remain unclear. We employ second harmonic generation (SHG) to elucidate the structural and electronic behaviour of Au(111) surfaces during camphor adsorption and desorption processes. Our technique allows measurement of the anisotropy of the SHG intensity while simultaneously performing cyclic voltammetry (CV) using the hanging meniscus configuration. The anisotropy data can be refined, yielding the symmetry components of the second order susceptibility tensor chi2 which are analysed as a function of external potential and related to the system's electrochemical behaviour. Results of SHG measurements are presented together with corresponding CV data and discussed with respect to the open questions mentioned above.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b110958hDOI Listing

Publication Analysis

Top Keywords

surface
5
organic compound
4
compound adsorption
4
adsorption au111
4
au111 simultaneous
4
simultaneous shg/electrochemical
4
shg/electrochemical studies
4
camphor
4
studies camphor
4
camphor attracted
4

Similar Publications

The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.

View Article and Find Full Text PDF

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.

View Article and Find Full Text PDF

To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.

View Article and Find Full Text PDF

Quantum Chemical NMR Spectroscopic Structural Analysis in Solution: The Investigation of 3-Indoleacetic Acid Dimer Formation in Chloroform and DMSO Solution.

Magn Reson Chem

January 2025

Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.

We present a DFT-PCM NMR study of 3-indoleacetic acid (3-IAA), used as a working example, including explicit solvent molecules, named PCM-nCHCl, PCM-nDMSO (n = 0, 2, 4, 8, 14, 20, and 25), to investigate the dimer formation in solution. Apart from well-known cyclic (I) and open (II) acetic acid (AA) dimers, two new structures were located on DFT-PCM potential energy surface (PES) for 3-IAA named quasicyclic A (III) and quasicyclic B (IV), the last one having N-H…O hydrogen bond (instead of O-H…O). In addition, four other structures having π-π type interactions named V, VI, VII, and VIII were also obtained completing the sample on the PES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!