Sandhoff disease in a golden retriever dog.

J Inherit Metab Dis

Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

Published: August 2002

A golden retriever dog is described with total hexosaminidase deficiency and raised GM2-ganglioside in CSF. The animal represents a model for human Sandhoff disease.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1016562626961DOI Listing

Publication Analysis

Top Keywords

sandhoff disease
8
golden retriever
8
retriever dog
8
disease golden
4
dog golden
4
dog described
4
described total
4
total hexosaminidase
4
hexosaminidase deficiency
4
deficiency raised
4

Similar Publications

There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear.

View Article and Find Full Text PDF

GM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in encoding the α-subunit and Sandhoff disease is caused by variants in encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable.

View Article and Find Full Text PDF

Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.

View Article and Find Full Text PDF

The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease.

View Article and Find Full Text PDF

Reactivation of mTOR signaling slows neurodegeneration in a lysosomal sphingolipid storage disease.

Neurobiol Dis

January 2025

Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address:

Sandhoff disease, a lysosomal storage disorder, is caused by pathogenic variants in the HEXB gene, resulting in the loss of β-hexosaminidase activity and accumulation of sphingolipids including GM2 ganglioside. This accumulation occurs primarily in neurons, and leads to progressive neurodegeneration through a largely unknown process. Lysosomal storage diseases often exhibit dysfunctional mTOR signaling, a pathway crucial for proper neuronal development and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!