A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Role of Magnesium, Pyrophosphate, and Their Complexes as Substrates and Activators of the Vacuolar H+-Pumping Inorganic Pyrophosphatase (Studies Using Ligand Protection from Covalent Inhibitors). | LitMetric

Inhibitors preferentially and covalently reactive with cysteine, arginine, histidine, and carboxyl-containing residues were inhibitory to the plant vacuolar H+-transporting inorganic pyrophosphatase (H+-PPase) from Vigna radiata (mung bean) and Beta vulgaris (red beet), but hydrophobic compounds and those reactive with tyrosine and lysine were less effective. Inhibition by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, phenylglyoxal, and N-ethylmaleimide was decreased in the presence of Mg2+ or mixtures of Mg2+ and inorganic pyrophosphate (PPi) but not by PPi alone. None of these ligands affected inhibition by reagents reactive with histidine. The Mg2+ dependence of protection from 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide inhibition followed first-order kinetics and yielded a Km for free Mg2+ of 20 to 23 [mu]M. Protection from inhibition by N-ethylmaleimide and phenylglyoxal varied as a function of Mg2PPi concentration, suggesting that this is the substrate for the H+-PPase. Protection by Mg2PPi followed Michaelis-Menten kinetics with a Km of approximately 2 [mu]M. These results are consistent with the predictions of a kinetic model for the H+-PPase (R.A. Leigh, A.J. Pope, I.R. Jennings, D. Sanders [1992] Plant Physiol 100: 1698-1750), which identified free Mg2+ as an allosteric activator (Km = 25 [mu]M) and Mg2PPi as the substrate (Km = 2.5-5 [mu]M).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC157826PMC
http://dx.doi.org/10.1104/pp.111.1.195DOI Listing

Publication Analysis

Top Keywords

inorganic pyrophosphatase
8
free mg2+
8
mg2+
5
role magnesium
4
magnesium pyrophosphate
4
pyrophosphate complexes
4
complexes substrates
4
substrates activators
4
activators vacuolar
4
vacuolar h+-pumping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!