Although estrogen is recognized increasingly as having an important role in modulating extrahypothalamic brain function, the mechanisms through which this occur are not well established. The norepinephrine (NE) neurons of the locus coeruleus provide an important neuromodulatory influence upon multiple neural networks throughout the brain and estrogen has been implicated in their regulation. Using a tyrosine hydroxylase (TH) promoter-LacZ transgenic mouse model, which enables rates of TH gene transcription to be examined in vivo, we have examined here whether estrogen regulates expression of the TH gene in the locus coeruleus of males and females. Optical area measurements of Xgal reaction product in the locus coeruleus revealed that gonadectomy exerted opposite effects on TH gene transcription in males and females; transgene expression was increased in males (P<0.01) but reduced in females (P<0.05). Estrogen reversed these effects in both sexes by suppressing gene expression in males (P<0.05) but elevating it in the female (P<0.05). These studies reveal a marked and unexpected sex difference in the regulation of TH gene activity in the mouse. While estrogen in the male, synthesized from circulating testosterone, suppresses TH gene transcription, estrogen in the female enhances TH promoter activity. The present results indicate that estrogen may exert very different sex-dependent effects upon the biosynthesis of NE within the locus coeruleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-328x(02)00383-2 | DOI Listing |
Cell Prolif
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
Pathological changes in the locus coeruleus-norepinephrine (LC-NE) neurons, the major source of norepinephrine (NE, also known as noradrenaline) in the brain, are evident during the early stages of neurodegenerative diseases (ND). Research on both human and animal models have highlighted the therapeutic potential of targeting the LC-NE system to mitigate the progression of ND and alleviate associated psychiatric symptoms. However, the early and widespread degeneration of the LC-NE system presents a significant challenge for direct intervention in ND.
View Article and Find Full Text PDFTau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi China.
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa, 56100, PI, Italy.
Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!