Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
5-HT(1A) receptor knockout (KO) mice have been described as more anxious in various anxiety paradigms. Because anxiety is often associated with autonomic changes like elevated body temperature and tachycardia, radiotelemetry was used to study these parameters in wild type (WT) and KO mice in stress-/anxiety-related paradigms. Basal body temperature (BT), heart rate (HR), and their diurnal rhythmicity did not differ between well-adapted WT and KO mice. In a simple stress-test, the Stress-induced Hyperthermia (SIH), injection-stress resulted in an exaggerated stress-response in KO mice. Furthermore, the 5-HT(1A) receptor agonist flesinoxan dose-dependently antagonized SIH and stress-induced tachycardia in WT, but not in KO, mice. In both genotypes, diazepam blocked SIH, but not stress-induced tachycardia. Finally, KO mice displayed an exaggerated stress response in HR and BT to novelty stress; this was supported by behavioral indications of enhanced anxiety. The present findings show that 5-HT(1A) receptor KO mice display a more "anxious-like" phenotype not only at a behavioral, but also at autonomic levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0893-133X(02)00317-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!