Download full-text PDF

Source

Publication Analysis

Top Keywords

long-range observations
4
observations external
4
external aortic
4
aortic grafts
4
long-range
1
external
1
aortic
1
grafts
1

Similar Publications

Fiber Length Distribution Characterizes the Brain Network Maturation during Early School-age.

Neuroimage

January 2025

Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China. Electronic address:

Environmental and social changes during early school age have a profound impact on brain development. However, it remains unclear how the brains of typically-developing children adjust white matter to optimize network topology during this period. This study aims to propose the fiber length distribution as a novel nodal metric to capture the continuous maturation of brain network.

View Article and Find Full Text PDF

Impact of Siberian Wildfires on Ice-Nucleating Particle Concentrations over the Northwestern Pacific.

Environ Sci Technol

January 2025

Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001, Japan.

Ice-nucleating particles (INPs) significantly influence aerosol-cloud precipitation interactions at regional and global scales. However, information regarding the concentrations and origins of INPs over the open ocean, particularly at high latitudes, remains insufficient due to access difficulties. In this study, we investigated the concentrations and origins of INPs over the western North Pacific to the Arctic Ocean through ship-borne observations conducted in the early autumn of 2016.

View Article and Find Full Text PDF

Symmetry: A Fundamental Resource for Quantum Coherence and Metrology.

Phys Rev Lett

December 2024

Ens de Lyon, Université Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

We introduce a new paradigm for the preparation of deeply entangled states useful for quantum metrology. We show that, when the quantum state is an eigenstate of an operator A, observables G which are completely off diagonal with respect to A have purely quantum fluctuations, as quantified by the quantum Fisher information, namely, F_{Q}(G)=4⟨G^{2}⟩. This property holds regardless of the purity of the quantum state, and it implies that off-diagonal fluctuations represent a metrological resource for phase estimation.

View Article and Find Full Text PDF

United States (US) background ozone (O) is the counterfactual O that would exist with zero US anthropogenic emissions. Estimates of US background O typically come from chemical transport models (CTMs), but different models vary in their estimates of both background and total O. Here, a measurement-model data fusion approach is used to estimate CTM biases in US anthropogenic O and multiple US background O sources, including natural emissions, long-range international emissions, short-range international emissions from Canada and Mexico, and stratospheric O.

View Article and Find Full Text PDF

Ultrashort pulses experience random quantum motion as they propagate through a mode-locked laser cavity, a phenomenon that inevitably affects the recently introduced pure-quartic solitons. Investigating this process is essential, as quantum-limited noise establishes fundamental performance limits for their application. To date, studies on quantum diffusion and the resulting timing jitter of these solitons remain sparse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!