Exposure to impulse noise, above a certain intensity, is harmful to auditory function. Effects of impulse noise on the central nervous system (CNS) are largely unexplored, and there is little information on critical threshold values and time factors. We have recently shown that neurofilament proteins are affected in the cerebral cortex and the hippocampus. Now we show that impulse noise induces expression of the immediate early gene c-Jun products, proposed to play a role in the initiation of neuronal death, and apoptosis as revealed by TUNEL staining. Rat brains were investigated immunohistochemically 2 h to 21 days after exposure to impulse noise of 198 dB or 202 dB. c-Jun was expressed in neuronal perikarya in layers II-VI of the temporal cortex, the cingulate and the piriform cortices at 2 h to 21 days after both exposure levels. Granule neurons of the dentate gyrus and the CA1-3 in the hippocampus pyramidal neurons were similarly affected. The elevated expression of c-Jun products remained high at all postexposure times. TUNEL staining was positive among the same nerve cell populations 6 h after exposure and persisted even at 7 days at both exposure levels.

Download full-text PDF

Source
http://dx.doi.org/10.1089/089771502320317131DOI Listing

Publication Analysis

Top Keywords

impulse noise
20
days exposure
12
exposure impulse
8
c-jun products
8
tunel staining
8
exposure levels
8
exposure
6
impulse
5
noise
5
exposure short-lasting
4

Similar Publications

In recent years, Wireless Sensor Networks (WSN) have become vital because of their versatility in numerous applications. Nevertheless, the attain problems like inherent noise, and limited node computation capabilities, result in reduced sensor node lifespan as well as enhanced power consumption. To tackle such problems, this study develops a Modified-Distributed Arithmetic-Offset Binary Coding-based Adaptive Finite Impulse Response (MDA-OBC based AFIR) framework.

View Article and Find Full Text PDF

Discrete FIR filter-based Control.

ISA Trans

January 2025

Departamento de Ingeniería Eléctrica, CINVESTAV, CDMX, Mexico. Electronic address:

In control system design, managing measurement noise is a critical challenge, requiring a balance between responsiveness and noise suppression. Traditional methods often involve trade-offs, compromising either aspect. This paper proposes a novel solution by integrating a Finite Impulse Response (FIR) filter within the discrete controller transfer function, coupled with disturbance rejection through the Internal Model Principle (IMP).

View Article and Find Full Text PDF

Reactivating and reorganizing activity-silent working memory: two distinct mechanisms underlying pinging the brain.

Cereb Cortex

January 2025

Department of Psychology and Behavioral Sciences, Zhejiang University, No. 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.

Recent studies have proposed that visual information in working memory (WM) can be maintained in an activity-silent state and reactivated by task-irrelevant high-contrast visual impulses ("ping"). Although pinging the brain has become a popular tool for exploring activity-silent WM, its underlying mechanisms remain unclear. In the current study, we directly compared the neural reactivation effects and behavioral consequences of spatial-nonmatching and spatial-matching pings to distinguish the noise-reduction and target-interaction hypotheses of pinging the brain.

View Article and Find Full Text PDF

During acquisition and reconstruction, medical images may become noisy and lose diagnostic quality. In the case of CT scans, obtaining less noisy images results in a higher radiation dose being administered to the patient. Filtering techniques can be utilized to reduce radiation without losing diagnosis capabilities.

View Article and Find Full Text PDF

A novel quantitative diagnosis method for rolling bearing faults based on digital twin model.

ISA Trans

December 2024

Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing 100124, China. Electronic address:

Dual-impulse behaviors of rolling bearings have been widely researched for quantitative diagnosis. However, it is challenging to accurately extract entry and exit moments of the fault from noise-contaminated raw signals. To address this issue, a novel quantitative diagnosis method based on digital twin model is proposed to assess the fault severity from the original signal waveform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!