When the charged Higgs boson is too heavy to be produced in pairs, the predominant production mechanism at linear colliders is via the single charged Higgs boson production processes, such as e(-)e(+)-->bcH+,taunuH+ and gammagamma-->bcH+,taunuH+. We show that the yield of a heavy charged Higgs boson at a gammagamma collider is typically 1 or 2 orders of magnitude larger than that at an e(-)e(+) collider. Furthermore, a polarized gammagamma collider can determine the chirality of the Yukawa couplings of fermions with charged Higgs boson via single charged Higgs boson production and, thus, discriminate models of new physics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.89.101803DOI Listing

Publication Analysis

Top Keywords

charged higgs
24
higgs boson
24
single charged
12
boson production
12
chirality yukawa
8
yukawa couplings
8
gammagamma collider
8
charged
6
higgs
6
boson
6

Similar Publications

Understanding how symmetry-breaking processes generate order out of disorder is among the most fundamental problems of nature. The scalar Higgs mode - a massive (quasi-) particle - is a key ingredient in these processes and emerges with the spontaneous breaking of a continuous symmetry. Its related exotic and elusive axial counterpart, a Boson with vector character, can be stabilized through the simultaneous breaking of multiple continuous symmetries.

View Article and Find Full Text PDF

Hunting for Bileptons at Hadron Colliders.

Entropy (Basel)

October 2024

INFN, Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy.

I review possible signals at hadron colliders of bileptons, namely doubly charged vectors or scalars with lepton number L=±2, as predicted by a 331 model, based on a SU(3)c×SU(3)L×U(1)X symmetry. In particular, I account for a version of the 331 model wherein the embedding of the hypercharge is obtained with the addition of three exotic quarks and vector bileptons. Furthermore, a sextet of SU(3)L, necessary to provide masses to leptons, yields an extra scalar sector, including a doubly charged Higgs, i.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used varied experimental searches with and without missing transverse momentum to analyze a Two-Higgs-Doublet Model (2HDM) augmented by a pseudo-scalar that mediates interactions between ordinary and dark matter.
  • The analysis utilized data from proton-proton collisions at 13 TeV collected by the ATLAS detector at the Large Hadron Collider between 2015 and 2018, totaling up to 139 fb.
  • Three key searches were statistically combined, focusing on large missing transverse momentum along with decaying Z bosons, Higgs bosons decaying to bottom quarks, and charged Higgs bosons interacting with top and bottom quarks, to derive constraints for various benchmark scenarios in the 2HDM+a
View Article and Find Full Text PDF

Tuning magnetic properties in layered van der Waals (vdW) materials has captured significant attention due to the efficient control of ground states by heterostructuring and external stimuli. Electron doping by electrostatic gating, interfacial charge transfer, and intercalation is particularly effective in manipulating the exchange and spin-orbit properties, resulting in a control of Curie temperature (T) and magnetic anisotropy. Here, an uncharted role of intercalation is discovered to generate magnetic frustration.

View Article and Find Full Text PDF

We consider a three-dimensional lattice Abelian Higgs gauge model for a charged N-component scalar field ϕ, which is invariant under SO(N) global transformations for generic values of the parameters. We focus on the strong-coupling regime, in which the kinetic Hamiltonian term for the gauge field is a small perturbation, which is irrelevant for the critical behavior. The Hamiltonian depends on a parameter v, which determines the global symmetry of the model and the symmetry of the low-temperature phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!