Quantum dimer model on the kagome lattice: solvable dimer-liquid and ising gauge theory.

Phys Rev Lett

Service de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.

Published: September 2002

We introduce quantum dimer models on lattices made of corner-sharing triangles. These lattices include the kagome lattice and can be defined in arbitrary geometry. They realize fully disordered and gapped dimer-liquid phase with topological degeneracy and deconfined fractional excitations, as well as solid phases. Using geometrical properties of the lattice, several results are obtained exactly, including the full spectrum of a dimer liquid. These models offer a very natural-and maybe the simplest possible-framework to illustrate general concepts such as fractionalization, topological order, and relation to Z2 gauge theories.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.89.137202DOI Listing

Publication Analysis

Top Keywords

quantum dimer
8
kagome lattice
8
dimer model
4
model kagome
4
lattice solvable
4
solvable dimer-liquid
4
dimer-liquid ising
4
ising gauge
4
gauge theory
4
theory introduce
4

Similar Publications

Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy.

View Article and Find Full Text PDF

High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.

View Article and Find Full Text PDF

Herein, we report the solvent-dependent reactivity of Fe(CO) toward AsF in either anhydrous HF or liquid SO. The reaction of Fe(CO) with the superacid HF/AsF leads to the protonation of the iron center and allows for the first-time structural characterization of [FeH(CO)] in the solid state, representing one of the most acidic transition metal hydride complexes to ever be isolated and structurally characterized. In the aprotic but oxidation-stable solvent SO, Fe(CO) is oxidized and dimerized to [Fe(CO)], which is isoelectronic with well-known Mn(CO).

View Article and Find Full Text PDF

Mechanically Interlocked Molecular Rotors on Pb(100).

Nano Lett

January 2025

Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.

The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.

View Article and Find Full Text PDF

In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!