The specific heat C and the electronic and phononic thermal conductivities kappa(e) and kappa(ph) are calculated in the mixed state for magnetic fields H near H(c2), including the effects of supercurrent flow and Andreev scattering. The resulting function C(H) is nearly linear while kappa(e)(H) exhibits an upward curvature near H(c2). The slopes decrease with impurity scattering which improves the agreement with the data on MgB2. The ratio of phonon relaxation times tau(n)/tau(s)=g(omega(0),H) for phonon energy omega(0) is smeared out around omega(0)=2Delta and tends to one for increasing H. This leads to a rapid reduction of kappa(ph)(H) in MgB2 for relatively small fields due to the rapid suppression of the smaller energy gap.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.89.137003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!