Density functional theory using the B3LYP hybrid functional has been employed to investigate the reactivity of Fe(TPA) complexes (TPA = tris(2-pyridylmethyl)amine), which are known to catalyze stereospecific hydrocarbon oxidation when H(2)O(2) is used as oxidant. The reaction pathway leading to O-O bond heterolysis in the active catalytic species Fe(III)(TPA)-OOH has been explored, and it is shown that a high-valent iron-oxo intermediate is formed, where an Fe(V) oxidation state is attained, in agreement with previous suggestions based on experiments. In contrast to the analogous intermediate [(Por.)Fe(IV)=O](+1) in P450, the TPA ligand is not oxidized, and the electrons are extracted almost exclusively from the mononuclear iron center. The corresponding homolytic O-O bond cleavage, yielding the two oxidants Fe(IV)=O and the OH. radical, has also been considered, and it is shown that this pathway is inaccessible in the hydrocarbon oxidation reaction with Fe(TPA) and hydrogen peroxide. Investigations have also been performed for the O-O cleavage in the Fe(III)(TPA)-alkylperoxide species. In this case, the barrier for O-O homolysis is found to be slightly lower, leading to loss of stereospecificity and supporting the experimental conclusion that this is the preferred pathway for alkylperoxide oxidants. The difference between hydroperoxide and alkylperoxide as oxidant derives from the higher O-O bond strength for hydrogen peroxide (by 8.0 kcal/mol).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja026488g | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
Mechanical interatomic bond formation under ultrahigh pressure induced by laser-driven shock waves has been demonstrated for C-C, C-O, and O-O bonds. In this study, molecules generated in primary amine solutions irradiated with high-intensity lasers were identified. When methylamine or ethylamine was dissolved in methanol or ethanol, molecules likely formed through C-C or O-N bonds between the amine and alcohol were detected.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physics, Alba Nova Research Center, Stockholm University, Stockholm SE-106 91 Sweden.
Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.
View Article and Find Full Text PDFInorg Chem
January 2025
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH)] and -benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH)] to [Mn(salpd)(OH)] by -benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)] to the key Mn(V) intermediate [Mn(salpd)(O)], and the critical O-O bond formation step.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Thrust of Earth, Ocean and Atmospheric Sciences Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China.
Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!