We introduced recently phase measurements usually performed in interferometry to the domain of image processing and intelligent vision [IEEE Trans. Instrum. Meas. 49, 867 (2000)]. Our purpose is to sense with a high accuracy the position, orientation, and displacement of two-dimensional (2D) surfaces observed by a static vision system. We report on significant improvements of the method. Experimental measurements reveal a peak-valley noise of approximately 10(-2) CCD pixel, corresponding approximately to a 10(-3) period of the phase reference pattern. Then the observation of 10 microm scaled features enables an accuracy of a few nm in the position sensing of the phase reference pattern for the extended 2D measurement range.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.41.005503DOI Listing

Publication Analysis

Top Keywords

position orientation
8
two-dimensional surfaces
8
accuracy position
8
phase reference
8
reference pattern
8
high-accuracy position
4
orientation measurement
4
measurement extended
4
extended two-dimensional
4
surfaces phase-sensitive
4

Similar Publications

Aphids are observed on various plant species, with most aphids feeding downward on stems. In this study, I studied the variations in feeding postures of aphids and their mechanisms. My field observations revealed that the majority of individuals from most species fed facing downward, or more precisely, towards the roots.

View Article and Find Full Text PDF

In a visual inverted pendulum balancing task avoiding impending falls gets harder as we age.

Exp Brain Res

January 2025

Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS 033, 415 South Street, Waltham, MA, 02453, USA.

Younger adults (YA) and older adults (OA) used a joystick to stabilize an unstable visual inverted pendulum (VIP) with a fundamental frequency (.27 Hz) of half that of bipedal human sway. Their task was to keep the VIP upright and to avoid ± 60° "fall" boundaries.

View Article and Find Full Text PDF

DECT sparse reconstruction based on hybrid spectrum data generative diffusion model.

Comput Methods Programs Biomed

January 2025

Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.

Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.

View Article and Find Full Text PDF

Grids designed for tomography: Stereovision transmission electron microscopy makes it easy to determine the winding handedness of helical nanocoils.

Micron

January 2025

Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:

Determining the handedness of helical nanocoils using transmission electron microscopy (TEM) has traditionally been challenging due to the deep depth of field and transmission nature of TEM, complementary techniques are considered necessary and have been practiced such as low angle rotary shadowing, scanning electron microscopy (SEM), or atomic force microscopy (AFM). These methods require customized sample preparation, making direct comparison difficult. Inspired by the need to identify the helical winding direction from TEM images alone, we developed a specialized tomography grid to capture stereo-pair images, enabling stereopsis.

View Article and Find Full Text PDF

Influence of Axial Rotation Between the Femoral Neck and Ankle Joint on Kinematics in Normal Knees: A Cross-Sectional Study.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo (Dr. Kono, Dr. Taketomi, Dr. Kage, Dr. Inui, and Dr. Tanaka); the Department of Information Systems, Faculty of Engineering, Saitama Institute of Technology, Fukaya, Saitama (Dr. Yamazaki); the Department of Orthopedic Biomaterial Science, Osaka University Graduate School of Medicine, Suita, Osaka (Dr. Tamaki, and Dr. Tomita); the Department of Orthopedic Surgery, Saitama Medical University, Saitama Medical Center, Kawagoe, Saitama (Dr. Inui); and the Department of Health Science, Graduate School of Health Science, Morinomiya University of Medical Sciences, Suminoe, Osaka, Japan (Dr. Tomita).

Background: The effect of axial rotation between the femoral neck and ankle joint (total rotation [TR]) on normal knees is unknown. Therefore, this study aimed to investigate the TR effect on normal knee kinematics.

Methods: Volunteers were divided into groups large (L), intermediate (I), and small (S), using hierarchical cluster analysis based on TR in the standing position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!