Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L.

Plant Physiol

Departments of Biochemistry (E.S., W.C., H.J.B., R.G.J.), Plant Sciences (H.J.B., R.G.J.), and Molecular and Cellular Biology (H.J.B.), The University of Arizona, Tucson, Arizona 85721-0088.

Published: November 1997

AI Article Synopsis

Article Abstract

A cDNA encoding myo-inositol O-methyltransferase (IMT1) has been transferred into Nicotiana tabacum cultivar SR1. During drought and salt stress, transformants (I5A) accumulated the methylated inositol D-ononitol in amounts exceeding 35 [mu]mol g-1 fresh weight In I5A, photosynthetic CO2 fixation was inhibited less during salt stress and drought, and the plants recovered faster than wild type. One day after rewatering drought-stressed plants, I5A photosynthesis had recovered 75% versus 57% recovery with cultivar SR1 plants. After 2.5 weeks of 250 mM NaCl in hydroponic solution, I5A fixed 4.9 [plus or minus] 1.4 [mu]mol CO2 m-2 s-1, whereas SR1 fixed 2.5 [plus or minus] 0.6 [mu]mol CO2 m-2 s-1. myo-Inositol, the substrate for IMT1, increases in tobacco under stress. Preconditioning of I5A plants in 50 mM NaCl increased D-ononitol amounts and resulted in increased protection when the plants were stressed subsequently with 150 mM NaCl. Pro, Suc, Fru, and Glc showed substantial diurnal fluctuations in amounts, but D-ononitol did not. Plant transformation resulting in stress-inducible, stable solute accumulation appears to provide better protection under drought and salt-stress conditions than strategies using osmotic adjustment by metabolites that are constitutively present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC158586PMC
http://dx.doi.org/10.1104/pp.115.3.1211DOI Listing

Publication Analysis

Top Keywords

nicotiana tabacum
8
cultivar sr1
8
salt stress
8
d-ononitol amounts
8
fixed [plus
8
[plus minus]
8
minus] [mu]mol
8
[mu]mol co2
8
co2 m-2
8
m-2 s-1
8

Similar Publications

Complete pathway elucidation of echinacoside in Cistanche tubulosa and de novo biosynthesis of phenylethanoid glycosides.

Nat Commun

January 2025

Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.

Echinacoside (ECH), one of the most representative phenylethanoid glycosides (PhGs), has considerable neuroprotective effects and is an effective ingredient in numerous commercial drugs. Here, we elucidate the complete ECH biosynthetic pathway in the medicinal plant Cistanche tubulosa. In total, 14 related genes are cloned and functionally characterized.

View Article and Find Full Text PDF

Genome-wide analysis of the SPL family in Zanthoxylum armatum and ZaSPL21 promotes flowering and improves salt tolerance in transgenic Nicotiana benthamiana.

Plant Mol Biol

January 2025

Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.

Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.

View Article and Find Full Text PDF

Background: Low temperatures disrupt nitrogen metabolism in tobacco, resulting in lower nicotine content in the leaves. 24-epibrassinolide (EBR) is a widely used plant growth regulator known for its roles in enhancing cold tolerance and nitrogen metabolism. Nevertheless, it remains unclear whether EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco.

View Article and Find Full Text PDF

Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection.

Microbiol Res

January 2025

International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:

Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.

View Article and Find Full Text PDF

The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!