The effects of mechanical wounding on membrane voltage, endogenous ion currents, and ion fluxes were investigated in primary roots of maize (Zea mays) using intracellular microelectrodes, a vibrating probe, and ion-selective electrodes. After a wedge-shaped wound was cut into the proximal elongation zone of the roots, a large inward current of approximately 60 [mu]A cm-2 was measured, together with a change in the current pattern along the root. The changes of the endogenous ion current were accompanied by depolarization of the membrane voltage of cortex cells up to 5 mm from the wound. Neither inhibitors of ion channels nor low temperature affected the large, wound-induced inward current. The fluxes of H+, K+, Ca2+, and Cl- contributed only about 7 [mu]A cm-2 to the wound-induced ion current. This suggests the occurrence of a large mass flow of negatively charged molecules, such as proteins, sulfated polysaccharides, and galacturonic acids, from the wound. Natural wounding of the root cortex by developing lateral roots caused an outwardly directed current, which was clearly different in magnitude and direction from the current induced by mechanical injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC158387 | PMC |
http://dx.doi.org/10.1104/pp.114.3.989 | DOI Listing |
J Gen Physiol
March 2025
Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Central South University, chemistry, CHINA.
The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.
View Article and Find Full Text PDFNanoscale
January 2025
Pro2TecS - Chemical Product and Process Technology Research Center. Department of Chemical Engineering and Materials Science. Universidad de Huelva. ETSI, Campus de "El Carmen", 21071 Huelva, Spain.
This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
School of Chemistry, South China Normal University, Guangzhou 510006, China.
High-voltage lithium-metal batteries (HVLMBs) are appealing candidates for next-generation high-energy rechargeable batteries, but their practical applications are still limited by the severe capacity degradation, attributed to the poor interfacial stability and compatibility between the electrode and the electrolyte. In this work, a 2D conjugated phthalocyanine framework (CPF) containing single atoms (SAs) of cobalt (CoSAs-CPF) is developed as a novel artificial solid-electrolyte interphase (SEI) in which a large amount of charge is transferred to the CPF skeleton due to the Lewis acid activity of the Co metal sites and the strong electron-absorbing property of the cyano group (-CN), greatly enhancing the adsorption of the Li and regulating the Li distribution toward dendrite-free LMBs, which are superior to most of the reported SEI membranes. As a result, the Li||Li symmetrical cell with CoSAs-CPF-modified Li anodes (CoSAs-CPF@Li) exhibits a low polarization with an area capacity of 1.
View Article and Find Full Text PDFNeuronal excitation-transcription (E-T) coupling pathways can be initiated by local increases of Ca concentrations within a nanodomain close to the L-type voltage-gated Ca channel (LTCC). However, molecular mechanisms controlling LTCC organization within the plasma membrane that help creation these localized signaling domains remain poorly characterized. Here, we report that neuronal depolarization increases Ca 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!