Cellular regulation of RGS proteins: modulators and integrators of G protein signaling.

Pharmacol Rev

Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Published: September 2002

Regulators of G protein signaling (RGS) and RGS-like proteins are a family (>30 members) of highly diverse, multifunctional signaling proteins that bind directly to activated G alpha subunits. Family members are defined by a shared RGS domain, which is responsible for G alpha binding and markedly stimulates the GTPase activity of G alpha subunits leading to their deactivation and termination of downstream signals. Although much has been learned in recent years about the biochemistry of RGS/G alpha interactions, considerably less is known about the broader cellular roles and regulation of RGS proteins. Recent findings indicate that cellular mechanisms such as covalent modification, alternative gene splicing, and protein processing can dictate the activity and subcellular localization of RGS proteins. Many family members also directly link G proteins to a growing list of signaling proteins with diverse cellular roles. New findings indicate that RGS proteins act not as dedicated inhibitors but, rather, as tightly regulated modulators and integrators of G protein signaling. In some cases, RGS proteins modulate the lifetime and kinetics of both slow-acting (e.g., Ca(2+) oscillations) and fast-acting (e.g., ion conductances, phototransduction) signaling responses. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. These and other recent studies with animal model systems indicate that RGS proteins play important roles in both physiology and disease. Recognition of the central functions these proteins play in vital cellular processes has focused our attention on RGS proteins as exciting new candidates for therapeutic intervention and drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1124/pr.54.3.527DOI Listing

Publication Analysis

Top Keywords

rgs proteins
32
proteins
14
protein signaling
12
rgs
10
regulation rgs
8
modulators integrators
8
integrators protein
8
proteins family
8
signaling proteins
8
alpha subunits
8

Similar Publications

Background: Regulator of G protein signaling (RGS) proteins participate in tumor formation and metastasis by acting on the α-subunit of heterotrimeric G proteins. The specific effect of RGS, particularly , on the progression of gastric cancer (GC) is not yet clear.

Aim: To explore the role and underlying mechanisms of action of in GC development.

View Article and Find Full Text PDF

The vasodilator hydralazine (HYZ) has been used clinically for ~ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands.

View Article and Find Full Text PDF

Regulators of G protein signaling (RGS) proteins finetune signaling via heterotrimeric G proteins to maintain physiologic homeostasis in various organ systems of the human body including the brain, kidney, heart, and the vasculature. Impaired regulation of G protein signaling by RGS proteins is implicated in the pathogenesis of several human diseases including various forms of cardiomyopathy such as hypertrophic cardiomyopathy and dilated cardiomyopathy (DCM). Both genetic and non-genetic changes that impinge on G protein signaling in cardiomyocytes are implicated in the etiology of DCM, and there is accumulating evidence that such genetic and non-genetic changes affecting G protein signaling in cell types other than cardiomyocytes could serve as a DCM trigger in humans.

View Article and Find Full Text PDF

Regulator of G protein signaling 1 (RGS1) is known to be highly expressed in various tumors, but its specific effects and regulatory mechanism in ovarian cancer (OC) progression are not well understood. To delve into the tumor biology, a predictive risk model for OC was developed, incorporating RGS1, PRKG2, CD24, and ABCB1, with RGS1 exhibiting the strongest correlation. The model's reliability and validity were confirmed through Kaplan-Meier analysis, receiver operating characteristic (ROC) curve, and principal component analysis (PCA).

View Article and Find Full Text PDF
Article Synopsis
  • Myocardial ischemia/reperfusion injury (MIRI) is a major complication after myocardial infarction, and the role of mitochondria-related genes in this process is not well understood.
  • Researchers utilized specific datasets (GSE67308 and GSE61592) to identify genes associated with MIRI and found glycine decarboxylase (Gldc) to be significantly elevated in MIRI models.
  • Experiments showed that reducing Gldc levels improved cell survival and reduced inflammation during hypoxia/reperfusion injury, indicating its potential as a diagnostic and therapeutic target for MIRI.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!