We have previously demonstrated that IGFBP-5 production by mammary epithelial cells increases dramatically during involution of the mammary gland. To demonstrate a causal relationship between IGFBP-5 and cell death we created transgenic mice expressing IGFBP-5 in the mammary gland using a mammary-specific promoter, beta-lactoglobulin. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Histological analysis indicated reduced numbers of alveolar end buds, with decreased ductal branching. Transgenic dams produced IGFBP-5 in their milk at concentrations similar to those achieved at the end of normal lactation. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. BrdU labelling was decreased, whereas DNA ladders were increased in transgenic animals on day 1 of lactation. On day 2 postpartum, the epithelial invasion of the mammary fat pad was clearly impaired in transgenic animals. The concentrations of the pro-apoptotic molecule caspase-3 and of plasmin were both increased in transgenic animals whilst the concentrations of 2 prosurvival molecules Bcl-2 and Bcl-x(L)were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I we examined IGF receptor phosphorylation and Akt phosphorylation and showed that both were inhibited. We attempted to "rescue" the transgenic phenotype by using growth hormone to increase endogenous IGF-I concentrations or by implanting minipumps delivering an IGF-1 analogue, R(3)-IGF-1, which binds weakly to IGFBP-5. Growth hormone treatment failed to affect mammary development suggesting that increased concentrations of endogenous IGF-1 are insufficient to overcome the high concentrations of IGFBP-5 produced by these transgenic animals. In contrast mammary development (gland weight and DNA content) was normalised by R3-IGF-I although milk production was only partially restored. This is the first demonstration that over-expression of IGFBP-5 can lead to; impaired mammary development, increased expression of the pro-apoptotic molecule caspase-3, increased plasmin generation and decreased expression of pro-survival molecules of the Bcl-2 family. It clearly demonstrates that IGF-I is an important developmental/survival factor for the mammary gland and, furthermore, this cell death programme may be utilised in a wide variety of tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.129.19.4547DOI Listing

Publication Analysis

Top Keywords

transgenic animals
16
cell death
12
transgenic mice
12
mammary gland
12
mammary development
12
mammary
11
igfbp-5
9
transgenic
9
mammary glands
8
glands transgenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!