AI Article Synopsis

  • The study highlights the role of the MUK/DLK/ZPK protein and JNK activity in the radial migration of developing neurons in the mouse neocortex, which is crucial for proper brain development.
  • Ectopic expression of MUK/DLK/ZPK in neural precursor cells disrupts radial migration but allows these cells to differentiate into neurons, indicating its influence on both migration and differentiation.
  • Furthermore, MUK/DLK/ZPK is shown to affect microtubule organization, suggesting that it regulates neuronal migration through microtubule-related processes.

Article Abstract

The radial migration of differentiating neurons provides an essential step in the generation of laminated neocortex, although its molecular mechanism is not fully understood. We show that the protein levels of a JNK activator kinase, MUK/DLK/ZPK, and JNK activity increase potently and temporally in newly generated neurons in developing mouse telencephalon during radial migration. The ectopic expression of MUK/DLK/ZPK in neural precursor cells in utero impairs radial migration, whereas it allows these cells to leave the ventricular zone and differentiate into neural cells. The MUK/DLK/ZPK protein is associated with dotted structures that are frequently located along microtubules and with Golgi apparatus in cultured embryonic cortical cells. In COS-1 cells, MUK/DLK/ZPK overexpression impairs the radial organization of microtubules without massive depolymerization. These results suggest that MUK/DLK/ZPK and JNK regulate radial cell migration via microtubule-based events.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.129.19.4483DOI Listing

Publication Analysis

Top Keywords

radial migration
16
muk/dlk/zpk jnk
8
impairs radial
8
cells muk/dlk/zpk
8
radial
6
migration
5
muk/dlk/zpk
5
cells
5
mapk-upstream protein
4
protein kinase
4

Similar Publications

The integration of self-expandable nitinol frames with cable-driven parallel mechanisms offers a promising advancement in minimally invasive cardiovascular interventions. This study presents the design, fabrication, and verification of a miniaturized self-expandable nitinol frame to enhance catheter tip steerability and navigation within complex vascular anatomies. The frame is reduced in size for delivery through 7-8 Fr sheaths while accommodating diverse vascular diameters, allowing up to a maximum expansion of 15 mm.

View Article and Find Full Text PDF

A comprehensive scientific analysis of temporal and spatial fluctuations of pollutants during the migration of groundwater is essential for precisely predicting their dispersion patterns and promoting rational regional development planning. In this research paper, a field radial dispersion test was conducted in decentralized drinking water sources downstream of the Fu Tuan River basin in Rizhao City, Shandong Province, China (FRSC). Chloride ion (Cl) solution was utilized as a tracer for the experiment.

View Article and Find Full Text PDF

The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.

View Article and Find Full Text PDF

Rational Fabrication of Functionally-Graded Surfaces for Biological and Biomedical Applications.

Acc Mater Res

December 2024

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.

As a ubiquitous feature of the biological world, gradation, in either composition or structure, is essential to many functions and processes. Taking protein gradation as an example, it plays a pivotal role in the development and evolution of human bodies, including stimulation and direction of the outgrowth of peripheral nerves in a developing fetus. It is also critically involved in wound healing by attracting and guiding immune cells to the site of injury or infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!