Protein kinase A (PKA) holoenzyme is anchored to specific subcellular regions by interactions between regulatory subunits (Pka-R) and A-kinase anchoring proteins (AKAPs). We examine the functional importance of PKA anchoring during Drosophila oogenesis by analyzing membrane integrity and actin structures in mutants with disruptions in Akap200, an AKAP. In wild-type ovaries, Pka-RII and Akap200 localized to membranes and to the outer rim of ring canals, actin-rich structures that connect germline cells. In Akap200 mutant ovaries, Pka-RII membrane localization decreased, leading to a destabilization of membrane structures and the formation of binucleate nurse cells. Defects in membrane integrity could be mimicked by expressing a constitutively active PKA catalytic subunit (Pka-C) throughout germline cells. Unexpectedly, nurse cells in Akap200 mutant ovaries also had enlarged, thin ring canals. In contrast, overexpressing Akap200 in the germline resulted in thicker, smaller ring canals. To investigate the role of Akap200 in regulating ring canal growth, we examined genetic interactions with other genes that are known to regulate ring canal morphology. Akap200 mutations suppressed the small ring canal phenotype produced by Src64B mutants, linking Akap200 with the non-receptor tyrosine kinase pathway. Together, these results provide the first evidence that PKA localization is required for morphogenesis of actin structures in an intact organism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.129.19.4423 | DOI Listing |
Life (Basel)
January 2025
The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia.
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes.
View Article and Find Full Text PDFNat Commun
January 2025
Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.
View Article and Find Full Text PDFCells
January 2025
Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!