The value of high-throughput genomic research is dramatically enhanced by association with key patient data. These data are generally available but of disparate quality and not typically directly associated. A system that could bring these disparate data sources into a common resource connected with functional genomic data would be tremendously advantageous. However, the integration of clinical and accurate interpretation of the generated functional genomic data requires the development of information management systems capable of effectively capturing the data as well as tools to make that data accessible to the laboratory scientist or to the clinician. In this review these challenges and current information technology solutions associated with the management, storage and analysis of high-throughput data are highlighted. It is suggested that the development of a pharmacogenomic data management system which integrates public and proprietary databases, clinical datasets, and data mining tools embedded in a high-performance computing environment should include the following components: parallel processing systems, storage technologies, network technologies, databases and database management systems (DBMS), and application services.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14622416.3.5.651 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!