A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell adhesion on poly(propylene fumarate-co-ethylene glycol) hydrogels. | LitMetric

Cell adhesion on poly(propylene fumarate-co-ethylene glycol) hydrogels.

J Biomed Mater Res

Department of Bioengineering, Rice University, MS142, P.O. Box 1892, Houston, TX 77251-1892, USA.

Published: December 2002

We synthesized poly(propylene fumarate-co-ethylene glycol) block copolymers [P(PF-co-EG)] that were crosslinked to form hydrogels and investigated the effect of copolymer composition on cell adhesion to the hydrogels. These copolymers were water soluble when the molar ratio of ethylene glycol repeating unit to propylene fumarate repeating unit was higher than 4.4. The water content of swollen hydrogels increased from 29 to 63% and the water contact angle decreased from 38 to 21 degrees as the molar ratio increased from 0.6 to 4.4. No significant change in either property was observed for ratios higher than 4.4. In a cell adhesion assay under serum-free conditions, the number of adherent platelets and smooth muscle cells decreased from 21 to 2% and from 78 to 20% of the initial seeding density, respectively, as the molar ratio increased from 0.6 to 7.8. Adherent smooth muscle cells did not spread on the hydrogels of the compositions tested. Adherent platelets did not show any filopodia. These results suggest that the hydrophilicity of P(PF-co-EG) hydrogels is one of the factors affecting cell adhesion, and that copolymer modification may be required for enhancing cell adhesion for an application involving the copolymers as in situ crosslinkable cell carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.10284DOI Listing

Publication Analysis

Top Keywords

cell adhesion
20
molar ratio
12
polypropylene fumarate-co-ethylene
8
fumarate-co-ethylene glycol
8
repeating unit
8
ratio increased
8
adherent platelets
8
smooth muscle
8
muscle cells
8
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!