Although several definitions and categorizations of home environmental modification strategies exist, previous researchers have not addressed whether the conceptualizations developed by clinicians and researchers match the way families think about how they modify the home environment in order to provide care to frail elders. The aim of the analysis reported here was to describe, from the family's perspective, the home environmental modification strategies that they use. Twenty-four caregivers of community-dwelling elders with a variety of impairments were interviewed. Seventeen families provided guided tours of the elder's home and allowed selected observation of some caregiving activities. Forty-four modification strategies were identified and categorized into one of seven home environmental modification purposes: organizing the home, supplementing the elder's function, structuring the elder's day, protecting the elder, working around limitations or deficits in the home environment, enriching the home environment, and transitioning to a new home setting. More research is needed on the processes families use to generate and refine the home environmental modification strategies identified in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nur.10048 | DOI Listing |
Sci Rep
December 2024
Department of Civil and Smart Construction Engineering, Shantou University, Shantou, 515063, Guangdong, China.
Saline soil is widely distributed in China and poses significant challenges to engineering construction due to its harmful effects, such as salt heaving, dissolution collapse, and frost heaving. The Microbial-Induced Calcite Precipitation (MICP) method is an emerging environmental-friendly modification that can reduce or eliminate the environmental and engineering hazards of saline soil. To verify the feasibility of the MICP method for improving the properties of saline soil, laboratory tests were conducted to study the effects of salt content, activated carbon content and freeze-thaw cycles on the compression and water retention behavior of MICP modified saline soil.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, India.
Lubricants are pivotal in mitigating friction and wear between surfaces, ensuring seamless movement of solid objects. However, the predominant use of petroleum-based lubricants in the automotive and industrial ssectors raises substantial concerns for future energy security. The exploration of vegetable oils as an alternative lubricant in the automotive industry was motivated by the depletion of fossil fuels and escalating environmental concerns.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!