Purpose: Adrenergic agents decrease intraocular pressure by reducing aqueous humor secretion from ciliary epithelial cells. Since the ionic concentration of aqueous humor contributes to intraocular pressure, we have investigated the effect of (-)-isoproterenol, a beta-adrenergic agonist on the maxi-K( +) channel in rabbit nonpigmented ciliary epithelial (NPE) cells.
Methods: Single-channel currents were recorded from the basolateral surface of acutely isolated NPE cells using patch clamp techniques.
Results: A calcium dependent maxi-K(+) channel was identified in 31% of cell-attached patches. In the excised condition the channel was activated in presence of calcium. In symmetrical K(+) solution a linear current-voltage relationship and unitary conductance of 158 +/- 15 pS was observed. Replacing K(+) with Na(+) the current-voltage curve shifted to the right and approached a reversal potential for K( +) ( approximately -80 mV). Barium (2 mM) from the intracellular side or iberiotoxin (50 nM) from the extracellular side blocked the channel activity. In cell-attached patches, the beta-receptor agonist (-)-isoproterenol (2.5 microM) increased channel open probability (P(o)) only when applied directly through the patch pipette. beta(2)-adrenoceptor antagonists (ICI-118, 551, l-timolol) blocked the channel activity more efficiently than the beta(1)-adrenoceptor antagonist betaxolol. In excised patches, (-)-isoproterenol increased baseline P(o) 5-fold (0.5 +/- 0.13) when GTP (100 microM) and GTPgammaS (100 microM) were present at the cytosolic surface of the pipette (control; P(o), 0.12 +/- 0.006). GTP augmented baseline channel activity (0.1 +/- 0.004) 7-fold (0.7 +/- 0.03) when (-)-isoproterenol was included in patch pipette.
Conclusions: Rabbit NPE cells expressed maxi-K(+) channels on their basolateral surface. The adrenergic agonist (-)-isoproterenol activated these channels via a beta(2)-adrenoceptor that was modulated by a direct G-protein gated pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1076/ceyr.24.3.173.8300 | DOI Listing |
Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Introduction: Primary cilia play an important role in the development of cancer by regulating signaling pathways. Several studies have demonstrated that women with mutations have, on average, 50% fewer ciliated cells compared with general women. However, the role of tubal cilia loss in the development of epithelial ovarian cancer (EOC) remains unclear.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!