EmrE is a small multidrug transporter that extrudes various drugs in exchange with protons, thereby rendering Escherichia coli cells resistant to these compounds. In this study, relative helix packing in the EmrE oligomer solubilized in detergent was probed by intermonomer crosslinking analysis. Unique cysteine replacements in transmembrane domains were shown to react with organic mercurials but not with sulfhydryl reagents, such as maleimides and methanethiosulfonates. A new protocol was developed based on the use of HgCl(2), a compound known to react rapidly and selectively with sulfhydryl groups. The reaction can bridge vicinal pairs of cysteines and form an intermolecular mercury-linked dimer. To circumvent problems inherent to mercury chemistry, a second crosslinker, hexamethylene diisocyanate, was used. After the HgCl(2) treatment, excess reagent was removed and the oligomers were dissociated with a strong denaturant. Only those previously crosslinked reacted with hexamethylene diisocyanate. Thus, vicinal cysteine-substituted residues in the EmrE oligomer were identified. It was shown that transmembrane domain (TM)-1 and TM4 in one subunit are in contact with the corresponding TM1 and TM4, respectively, in the other subunit. In addition, TM1 is also in close proximity to TM4 of the neighboring subunit, suggesting possible arrangements in the binding and translocation domain of the EmrE oligomer. This method should be useful for other proteins with cysteine residues in a low-dielectric environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129395 | PMC |
http://dx.doi.org/10.1073/pnas.192392899 | DOI Listing |
Environ Int
June 2023
Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland. Electronic address:
Background: The presence of polyethylene terephthalate (PET) oligomers in food contact materials (FCMs) is well-documented. Consumers are exposed through their migration into foods and beverages; however, there is no specific guidance for their safety evaluation.
Objectives: This systematic evidence map (SEM) aims to identify and organize existing knowledge and associated gaps in hazard and exposure information on 34 PET oligomers to support regulatory decision-making.
Biochem Pharmacol
April 2021
OncoWitan, Lille (Wasquehal) 59290, France. Electronic address:
For more than 60 years dequalinium chloride (DQ) has been used as anti-infective drug, mainly to treat local infections. It is a standard drug to treat bacterial vaginosis and an active ingredient of sore-throat lozenges. As a lipophilic bis-quaternary ammonium molecule, the drug displays membrane effects and selectively targets mitochondria to deplete DNA and to block energy production in cells.
View Article and Find Full Text PDFACS Omega
March 2020
State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China.
The mitochondrial calcium uniporter (MCU) plays a critical role in mitochondrial calcium uptake into the matrix. In metazoans, the uniporter is a tightly regulated multicomponent system, including the pore-forming subunit MCU and several regulators (MICU1, MICU2, and Essential MCU REgulator, EMRE). The calcium-conducting activity of metazoan MCU requires the single-transmembrane protein EMRE.
View Article and Find Full Text PDFMol Cell
March 2017
Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Electronic address:
Ca dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established.
View Article and Find Full Text PDFJ Biol Chem
July 2012
Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University SE-106 91 Stockholm, Sweden.
The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!