A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

N-acetylcysteine effect on the luminol-dependent chemiluminescence pattern of reactive oxygen species generation by human polymorphonuclear leukocytes. | LitMetric

N-acetylcysteine effect on the luminol-dependent chemiluminescence pattern of reactive oxygen species generation by human polymorphonuclear leukocytes.

Pulm Pharmacol Ther

Department of Experimental and Clinical Physiology, Institute of Physiology and Biochemistry, Medical University of Lodz, Mazowiecka str 6/8, 92-215 Lodz, Poland.

Published: November 2002

The evidence of the effect of N-acetylcysteine on reactive oxygen species produced by human polymorphonuclear leukocytes (PMNs) is often contradictory, as thiol compounds may react with not only reactive oxygen and nitrogen species but also they may influence intracellular glutathione levels. The effect of 20, 100 and 200 microM N-aceylcysteine (NAC) on luminol dependent chemiluminescence (LDCL) of human PMNs (10(6) cells/ml phospate buffered saline (PBS)) and whole blood to N-formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol-12-myristate-13-acetate (PMA) was studied. Further, the ability of NAC to increase PMNs intracellular thiols and affect subsequent PMNs, stimulation was assessed. NAC 100 and 200 microM, but not 20 microM, was found to attenuate the kinetic parameters of initial phase of fMLP-stimulated PMNs oxidative burst. NAC at the concentration of 100 and 200 microM decreased the rate, maximum and integrated value of PMNs response to fMLP. The integrated value of PMA-induced PMNs and fMLP-induced whole blood LDCL response was also decreased by 100 and 200 microM NAC. Furthermore, all tested NAC concentrations decreased LDCL of resting PMNs suspension. The chemiluminescence pattern of reactive oxygen species (ROS) generation by PMNs stimulated with fMLP or PMA did not differ significantly from those preincubated with either 20, 100, or 200 microM NAC. Similarly, NAC did not increase the concentration of intracellular thiols in resting PMNs. However, addition of 200 microM NAC to PMA-stimulated PMNs prevented the decline in intracellular thiols pool. Both PMA- and fMLP-activated PMNs oxidized extracellular NAC. These results indicate that NAC decreases the intensity of PMNs oxidative burst by direct scavenger activity.

Download full-text PDF

Source
http://dx.doi.org/10.1006/pupt.2002.0369DOI Listing

Publication Analysis

Top Keywords

200 microm
24
100 200
20
reactive oxygen
16
pmns
13
oxygen species
12
intracellular thiols
12
microm nac
12
nac
11
chemiluminescence pattern
8
pattern reactive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!