Vasoactive intestinal peptide mRNA and immunoreactivity are decreased in fetal alcohol syndrome model.

Regul Pept

Section on Developmental and Molecular Pharmacology, Laboratory of Developmental Neurobiology, NICHD, NIH, Building 49, Room 5A-38, MSC 4480, 9000 Rockville Pike, Bethesda, MD 20892, USA.

Published: October 2002

Vasoactive intestinal peptide (VIP) regulates growth in the early post-implantation embryo. Previous work has demonstrated that peptide agonists (SALLRSIPA and NAPVSIPQ) from downstream mediators that are regulated by VIP were able to prevent the alcohol-induced fetal death, growth restriction and microcephaly associated with fetal alcohol syndrome. Here we evaluated the role of VIP in this mouse model of fetal alcohol syndrome, to determine if fetal or maternal levels of VIP are altered. In addition, we evaluated whether peptide treatment would alter the effects of alcohol on VIP levels. Treatment groups included control, alcohol, and alcohol+peptides. VIP levels were measured with enzyme immunoassay [EIA] (Peninsula Laboratories, Belmont, CA). Quantitation of VIP expression was measured with rt-PCR using mimic cDNA primers. Embryo/decidual VIP levels were similar in control and alcohol-treated groups 6 h after treatment. However, in the embryo/deciduas at 12 and 24 h, VIP levels were below the EIA's detection limit in the alcohol-treated groups, and significantly lower than the control or peptide-pretreated groups (p<0.05). Maternal cortex VIP levels were undetectable and significantly lower in the alcohol-treated group than control or peptide+alcohol group at 6 and 12 h (p<0.001). VIP mRNA expression was quantitated in the embryo and deciduas, with a significant decline noted at 6 h to 58% of control levels (p=0.02). Pretreatment with the peptides attenuated the alcohol-induced decrease in VIP mRNA. These studies demonstrate that treatment with alcohol can decrease the expression and immunoreactivity of VIP in both maternal and fetal tissues. This alcohol-induced loss of a recognized regulator of embryonic growth and differentiation may contribute to the sequelae of toxicity observed in fetal alcohol syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-0115(02)00104-0DOI Listing

Publication Analysis

Top Keywords

vip levels
16
fetal alcohol
12
alcohol syndrome
12
vip
9
vasoactive intestinal
8
intestinal peptide
8
alcohol-treated groups
8
fetal
5
alcohol
5
levels
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!