Neuromuscular action of Bothrops lanceolatus (Fer de lance) venom and a caseinolytic fraction.

Toxicon

Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6111, 13083-970, SP, Campinas, Brazil.

Published: September 2002

A protein capable of inducing neuromuscular blockade in avian preparations and of depolarizing mouse diaphragm muscle was isolated from Bothrops lanceolatus venom using gel filtration and ion-exchange chromatography. The purified protein was a single chain polypeptide with an estimated molecular mass of 27.5 kDa by SDS-PAGE and had caseinolytic activity (13.3 units/mg), but no phospholipase A(2). B.lanceolatus venom (50 micro g/ml) and the caseinolytic protein (20 micro g/ml) produced contracture and progressive irreversible blockade (50% in 25+/-5 min (SEM) and 45+/-15 min, respectively), in indirectly stimulated chick biventer cervicis preparations. The contractile responses to acetylcholine (ACh; 37 and 74 micro M, n=6) were inhibited by venom and the caseinolytic protein, whereas those to potassium (13.4mM, n=6) were not. Membrane resting potential measurements in mouse hemidiaphragm preparations showed that B.lanceolatus venom and the purified protein caused depolarization which was prevented by D-tubocurarine (14.6mM). The venom produced a slight increase in the amplitude and frequency of miniature end-plate potentials, but this effect was not seen with the purified fraction. These results suggest that the purified protein acts exclusively post-synaptically.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0041-0101(02)00135-6DOI Listing

Publication Analysis

Top Keywords

purified protein
12
bothrops lanceolatus
8
venom caseinolytic
8
blanceolatus venom
8
micro g/ml
8
caseinolytic protein
8
venom
6
protein
6
neuromuscular action
4
action bothrops
4

Similar Publications

Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1.

Methods Mol Biol

January 2025

Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.

Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.

View Article and Find Full Text PDF

Assays of Platelet SNARE-actin Interactions.

Methods Mol Biol

January 2025

Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.

The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.

View Article and Find Full Text PDF

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.

View Article and Find Full Text PDF

[Therapeutic effect and mechanism of Jingfang Granules on chronic fatigue syndrome based on intestinal flora and metabolomics].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Pharmacy, Shandong University of Traditional Chinese Medicine Ji'nan 250355, China State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd. Linyi 276005, China.

This study aims to investigate the protective effect and potential mechanism of Jingfang Granules(JF) on the mouse model of chronic fatigue syndrome(CFS). Mice were randomized into normal, model, and low-, medium-, and high-dose(0.9, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!