Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients.

J Neurol Sci

Department of Neurological Sciences, Centro Dino Ferrari, Padiglione Ponti, University of Milan, IRCCS Ospedale Maggiore Policlinico, 20122, Via F Sforza, 35, 20122 Milan, Italy.

Published: October 2002

The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-510x(02)00247-2DOI Listing

Publication Analysis

Top Keywords

point mutations
12
healthy subjects
12
d-loop region
12
mutations
8
subjects mitochondrial
8
mtdna replication
8
patients
6
evidence age-related
4
age-related distribution
4
mtdna
4

Similar Publications

Cold atmospheric plasma potentiates ferroptosis via EGFR(Y1068)-mediated dual axes on GPX4 among triple negative breast cancer cells.

Int J Biol Sci

January 2025

Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.

Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.

View Article and Find Full Text PDF

The gene (OMIM: 608271) encodes the Microtubule-Actin Cross-Linking Factor 1 protein. Existing medical research shows that genetic mutations in the gene have been associated with neurodevelopmental and neurodegenerative disorders, with variants of unknown significance also linked to autism spectrum disorder (ASD). However, the number of reported autism disorder or epilepsy cases associated with mutations remains limited.

View Article and Find Full Text PDF

Most cancer mutation profiling studies are laboratory-based and lack direct clinical application. For clinical use, it is necessary to focus on key genes and integrate them with relevant clinical variables. We aimed to evaluate the prognostic value of the dosage of the KRAS G12 mutation, a key pancreatic ductal adenocarcinoma (PDAC) variant and to investigate the biological mechanism of the prognosis associated with the dosage of the KRAS G12 mutation.

View Article and Find Full Text PDF

The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.

View Article and Find Full Text PDF

Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels.

Int J Biol Macromol

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China. Electronic address:

A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!