We examined a floodplain area in the middle section of the river Elbe Valley with regard to hydrogeological and hydrological processes using isotopic methods. Over two years, river water and groundwater have been analysed for temporal and spatial chemical and isotopic (delta2H and delta18O) changes. By these methods we assessed the flow dynamics of the river-groundwater infiltration system. At low and mean river stages there is a general hydraulic gradient from the higher areas at the margin of the valley towards the floodplain. During floods river water infiltrates into the adjacent aquifer not primarily through the river banks but first through surface water inflow from north to south, via depressions and gullies from the back of the floodplain. The early stage of river water infiltration is characterized by a sharp decrease in conductivity and in concentrations of SO4(2-) and Cl- in the hydraulically connected shallow aquifer. delta2H and delta18O values show a similar tendency. We observed a significant minimum in stable isotope ratios during the flood in March 1999. Using a simple mixing equation it was calculated that the groundwater in the upper, shallow aquifer consists of around 70% river water in the transition zone (well 13) during flooding.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10256010208033304DOI Listing

Publication Analysis

Top Keywords

river water
16
river
8
river elbe
8
delta2h delta18o
8
shallow aquifer
8
water
5
environmental isotopes
4
isotopes 18o
4
18o identification
4
identification infiltration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!