The balance of lipid flux in adipocytes is controlled by the opposing actions of lipolysis and lipogenesis, which are controlled primarily by hormone-sensitive lipase and lipoprotein lipase (LPL), respectively. Catecholamines stimulate adipocyte lipolysis through reversible phosphorylation of hormone-sensitive lipase, and simultaneously inhibit LPL activity. However, LPL regulation is complex and previous studies have described translational regulation of LPL in response to catecholamines because of an RNA-binding protein that interacts with the 3'-untranslated region of LPL mRNA. In this study, we identified several protein components of an LPL RNA binding complex. Using an LPL RNA affinity column, we identified two of the RNA-binding proteins as the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), and A kinase anchoring protein (AKAP) 121/149, one of the PKA anchoring proteins, which has known RNA binding activity. To determine whether the C subunit was involved in LPL translation inhibition, the C subunit was depleted from the cytoplasmic extract of epinephrine-stimulated adipocytes by immunoprecipitation. This resulted in the loss of LPL translation inhibition activity of the extract, along with decreased RNA binding activity in a gel shift assay. To demonstrate the importance of the AKAPs, inhibition of PKA-AKAP binding with a peptide competitor (HT31) prevented epinephrine-mediated inhibition of LPL translation. C subunit kinase activity was necessary for LPL RNA binding and translation inhibition, suggesting that the phosphorylation of AKAP121/149 or other proteins was an important part of RNA binding complex formation. The hormonal activation of PKA results in the reversible phosphorylation of hormone-sensitive lipase, which is the primary mediator of adipocyte lipolysis. These studies demonstrate a dual role for PKA to simultaneously inhibit LPL-mediated lipogenesis through inhibition of LPL translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M202560200 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Radiation Oncology, Lianyungang Second People's Hospital (Lianyungang Tumur Hospital), Lianyungang, China.
Background: Hepatocellular carcinoma (LIHC) poses a significant health challenge worldwide, primarily due to late-stage diagnosis and the limited effectiveness of current therapies. Cancer stem cells are known to play a role in tumor development, metastasis, and resistance to treatment. A thorough understanding of genes associated with stem cells is crucial for improving the diagnostic precision of LIHC and for the advancement of effective immunotherapy approaches.
View Article and Find Full Text PDFCase Rep Genet
January 2025
Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.
Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!