The thylakoid membrane protein ALB3 associates with the cpSecY-translocase in Arabidopsis thaliana.

Biochem J

Institut für Biologie III der RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany.

Published: December 2002

The integration of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane requires the integral thylakoid membrane protein ALB3, a homologue of the bacterial cytoplasmic membrane protein YidC. In bacteria, YidC is associated with the SecY-translocase and facilitates the integration of Sec-dependent proteins into the plasma membrane. In addition, it is also involved in the insertion of Sec-independent proteins. In the present study we demonstrate, in Arabidopsis thaliana, that most ALB3 is a constituent of an oligomeric complex of approx. 180 kDa. In addition, we detected ALB3 in several higher-molecular-mass complexes (up to 700 kDa). Furthermore, we show that most ALB3 co-fractionates with cpSecY during gel-filtration analysis and blue native gel electrophoresis, suggesting an association of ALB3 with the cpSecY complex. A direct interaction of ALB3 with the cpSecY complex was demonstrated by co-immunoprecipitation experiments using digitonin-solubilized thylakoid membrane proteins and anti-cpSecY or anti-ALB3 antibodies. This result was further confirmed by electron microscopic co-immunolocalization of ALB3 and cpSecY. In addition, an association of ALB3 with the cpSecY complex was demonstrated directly by cross-linking experiments using the chemical cross-linker disuccinimidyl suberate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223031PMC
http://dx.doi.org/10.1042/BJ20021291DOI Listing

Publication Analysis

Top Keywords

thylakoid membrane
16
alb3 cpsecy
16
membrane protein
12
cpsecy complex
12
alb3
9
protein alb3
8
arabidopsis thaliana
8
association alb3
8
complex demonstrated
8
membrane
5

Similar Publications

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.

View Article and Find Full Text PDF

Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.

View Article and Find Full Text PDF

Metabolomics and transcriptomics analyses revealed overexpression of TaMGD enhances wheat plant heat stress resistance through multiple responses.

Ecotoxicol Environ Saf

January 2025

College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China; State Key Laboratory of High-Efficiency Production of Wheat-Mazie Doubel Cropping, Zhengzhou 450046, China. Electronic address:

Monogalactosyldiacylglycerol (MGDG), as the primary lipid component of thylakoid membranes, has a significant part in plant growth and stress response. The current study employed two transgenic wheat lines (MG1516 and MG1314) overexpressing the MGDG synthase gene (TaMGD) and wild-type cv "JW1" to explore the function of TaMGD in response to high temperature stress during the anthesis stage of wheat. Under high-temperature stress, the overexpressed wheat lines exhibited higher grain weight, increased antioxidant enzyme activity, and lower HO and malondialdehyde contents in leaves.

View Article and Find Full Text PDF

The BES1/BZR1 transcriptional factor SlBES2 regulates photosynthetic apparatus in tomato fruit.

BMC Plant Biol

January 2025

Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.

Background: Fruit photosynthetic apparatus development comprises a series of biological processes which is essential in determining fruit development and quality formation. However, the understanding of the regulation of fruit photosynthetic apparatus development remains poor.

Results: In this study, we identified a transcriptional factor SlBES2, the closest homolog of BES1 and BZR1 in tomato BES1 family, is highly expressed in fruit at mature green (MG) stage and exhibited transcriptional inhibition activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!