One-step synthesis of amphiphilic diblock copolymers from bacterial poly([R]-3-hydroxybutyric acid).

Biomacromolecules

Chemistry Department, McGill University, 3420 University Street, Montréal, Quebec, Canada H3A 2A7.

Published: July 2003

Catalyzed transesterification in the melt is used to produce diblock copolymers of poly([R]-3-hydroxybutyric acid), PHB, and monomethoxy poly(ethylene glycol), mPEG, in a one-step process. Bacterial PHB of high molecular weight is depolymerized by consecutive and partly simultaneous reactions: pyrolysis and transesterification. The formation of diblocks is accomplished by the nucleophilic attack from the hydroxyl end-group of the mPEG catalyzed by bis(2-ethylhexanoate) tin. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm025553bDOI Listing

Publication Analysis

Top Keywords

diblock copolymers
12
poly[r]-3-hydroxybutyric acid
8
one-step synthesis
4
synthesis amphiphilic
4
amphiphilic diblock
4
copolymers bacterial
4
bacterial poly[r]-3-hydroxybutyric
4
acid catalyzed
4
catalyzed transesterification
4
transesterification melt
4

Similar Publications

Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals.

View Article and Find Full Text PDF

Self-Assembly and Drug Encapsulation Properties of Biocompatible Amphiphilic Diblock Copolymers.

Langmuir

January 2025

Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo 671-2201, Japan.

To prepare amphiphilic diblock copolymers (MP), a controlled radical polymerization approach was employed, incorporating hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) with hydrophobic poly(3-methoxypropyl acrylate) (PMPA). The synthesized diblock copolymers feature a PMPC block with a degree of polymerization (DP) of 100 and a PMPA block with DP (=) values of 171 and 552. The hydrophilic PMPC block exhibits biocompatibility, such as inhibition of platelet and protein adsorption, because of its hydrophilic pendant zwitterionic phosphorylcholine groups that have the same chemical structure as cell membrane surfaces.

View Article and Find Full Text PDF

Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (). We previously showed that addition of a poly(ethylene-oxide)--poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %.

View Article and Find Full Text PDF

Acid-Enhanced Photoiniferter Polymerization under Visible Light.

Angew Chem Int Ed Engl

December 2024

ETH Zurich, Materials, Vladimir-​Prelog-Weg 1-5/10, 8093, Zürich, SWITZERLAND.

Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT)  polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers, and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities.

View Article and Find Full Text PDF

The full exploitation of the outstanding mechanical properties of cellulose nanofibrils (CNFs) as potential reinforcements in nanocomposite materials is limited by the poor interactions at the CNF-polymer matrix interface. Within this work, tailor-made copolymers were designed to mediate the interface between CNFs and biodegradable poly(butylene adipate--terephthalate) (PBAT), and their effect on extruded nanocomposite performance was tested. For this purpose, two well-defined amphiphilic anchor-tail diblock copolymer structures were compared, with a fixed anchor block length and a large difference in the hydrophobic tail block length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!