The role of the laser pulse duration in matrix-assisted laser desorption/ionization mass spectrometry with infrared lasers (IR-MALDI-MS) emitting in the 3 microm wavelength range has been evaluated. Mass spectrometric performance and characteristics of the IR-MALDI process were examined by comparing a wavelength-tuneable mid-infrared optical parametric oscillator (OPO) laser of 6 ns pulse duration, tuned to wavelengths of 2.79 and 2.94 microm, with an Er:YAG laser (lambda = 2.94 microm) with two pulse durations of 100 and 185 ns, and an Er:YSGG laser (lambda = 2.79 microm) with a pulse duration of 75 ns. Threshold fluences for the desorption of cytochrome C ions were determined as a function of the laser pulse duration for various common IR-MALDI matrices. For the majority of these matrices a reduction in threshold fluence by a factor of 1.2-1.9 was found by going from the 75-100 ns long pulses of the Erbium lasers to the short 6 ns OPO pulse. Within the experimental accuracy threshold fluences were equal for the 100 and the 185 ns pulse duration of the Er:YAG laser. Some pronounced pulse duration effects related to the ion formation from a glycerol matrix were also observed. The effect of the laser pulse length on the duration of ion emission was furthermore investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1044-0305(02)00397-5DOI Listing

Publication Analysis

Top Keywords

pulse duration
28
laser pulse
20
pulse
10
laser
9
role laser
8
duration
8
matrix-assisted laser
8
laser desorption/ionization
8
desorption/ionization mass
8
mass spectrometry
8

Similar Publications

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Background -Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. In electrocardiogram (ECG) recordings abnormal durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Previous analyses of the National Health and Nutrition Examination Survey (NHANES) database for associations between smoking and ECG abnormalities were incomplete.

View Article and Find Full Text PDF

Influence of cell shape on sonoporation efficiency in microbubble-facilitated delivery using micropatterned cell arrays.

Sci Rep

December 2024

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.

Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.

View Article and Find Full Text PDF

A U-Net based partial convolutional time-domain separation model to identify motor units from surface electromyographic signals in real time.

J Electromyogr Kinesiol

December 2024

School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:

This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.

View Article and Find Full Text PDF

We present a patient treated with personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) for non-small cell lung cancer (NSCLC) using the adaptive Varian Ethos™ system equipped with the novel HyperSight imaging platform. Three pulses of 12 Gy were separated by a pause of four weeks during which the tumor was given enough time to respond to treatment. Only initial planning computed tomography (CT) was acquired on a CT simulator (Siemens Somatom Definition Edge), whereas other pulses were adapted using online cone beam computed tomography (CBCT) images (iCBCT Acuros reconstruction) acquired while the patient was lying on the treatment couch and delivered immediately.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!