Clinical aspects of photodynamic therapy.

Sci Prog

Department of Surgery, Cranfield Postgraduate Medical School, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK.

Published: November 2002

Photodynamic therapy is a method for local destruction of tissue or organisms by generating toxic oxygen and other reactive species using light absorbed by an administered or an endogenously generated photosensitiser. It is a highly promising treatment for patients with cancer. More recently it has found increasing use as a method of therapy for non-cancerous illnesses. It depends on the exploitation of natural and vital reactions widespread in nature that have driven and preserved life on this planet. Following administration of a photosensitiser or its precursor there is an accumulation or retention in areas of cancer and disease relative to adjacent normal tissue. The photosensitiser is inactive until irradiated by light, following which cellular destruction occurs. The clear attraction of this method is the possibility of some targeting of the disease by drug and by the area irradiated. This explanation although oversimplified has been the reason for the scientific and clinical interest in photodynamic therapy. An understanding of evolutionary photobiology is enormously helpful to understand disease response and clinical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361194PMC
http://dx.doi.org/10.3184/003685002783238825DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
clinical aspects
4
aspects photodynamic
4
therapy
4
therapy photodynamic
4
therapy method
4
method local
4
local destruction
4
destruction tissue
4
tissue organisms
4

Similar Publications

Objective: To compare the treatment of osteoradionecrosis (ORN) using a protocol that incorporates antimicrobial photodynamic therapy with a conventional treatment protocol.

Methodology: This retrospective study analyzed 55 patients diagnosed with ORN at a reference hospital between 2002 and 2021. Patients were treated using two different clinical protocols.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.

View Article and Find Full Text PDF

Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy.

Biomaterials

December 2024

Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice.

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Hierarchically Engineered Self-Adaptive Nanoplatform Guided Intuitive and Precision Interventions for Deep-Seated Glioblastoma.

ACS Nano

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!