Nidogens are highly conserved proteins in vertebrates and invertebrates and are found in almost all basement membranes. According to the classical hypothesis of basement membrane organization, nidogens connect the laminin and collagen IV networks, so stabilizing the basement membrane, and integrate other proteins. In mammals two nidogen proteins, nidogen-1 and nidogen-2, have been discovered. Nidogen-2 is typically enriched in endothelial basement membranes, whereas nidogen-1 shows broader localization in most basement membranes. Surprisingly, analysis of nidogen-1 gene knockout mice presented evidence that nidogen-1 is not essential for basement membrane formation and may be compensated for by nidogen-2. In order to assess the structure and in vivo function of the nidogen-2 gene in mice, we cloned the gene and determined its structure and chromosomal location. Next we analyzed mice carrying an insertional mutation in the nidogen-2 gene that was generated by the secretory gene trap approach. Our molecular and biochemical characterization identified the mutation as a phenotypic null allele. Nidogen-2-deficient mice show no overt abnormalities and are fertile, and basement membranes appear normal by ultrastructural analysis and immunostaining. Nidogen-2 deficiency does not lead to hemorrhages in mice as one may have expected. Our results show that nidogen-2 is not essential for basement membrane formation or maintenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135501PMC
http://dx.doi.org/10.1128/MCB.22.19.6820-6830.2002DOI Listing

Publication Analysis

Top Keywords

basement membrane
20
basement membranes
16
nidogen-2 gene
12
essential basement
12
membrane formation
12
nidogen-2
9
basement
9
nidogen-2 essential
8
gene
7
mice
6

Similar Publications

Background: Alport syndrome (AS) is a genetically heterogeneous disorder resulting from variants in genes coding for the alpha-3/4/5 chains of Collagen IV, leading to defective basement membranes in the kidney, cochlea, and eye. The clinical manifestations of AS vary in patients. Cases of childhood AS caused by presenting primarily with nephrotic syndrome (NS) are rarely reported.

View Article and Find Full Text PDF

To explore clinical and genetic features of persistent asymptomatic microscopic hematuria in children. A retrospective case analysis of 135 individuals admitted to Xi 'an Children's Hospital with persistent asymptomatic microscopic haematuria between January 2016 to December 2023 was conducted. The demographic characteristics, kidney pathology and gene results of 135 individuals were analyzed.

View Article and Find Full Text PDF

Engineered antigen-specific T regulatory cells suppress autoreactivity to the anti-glomerular basement membrane disease antigen.

Kidney Int

January 2025

Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia. Electronic address:

Anti-glomerular basement membrane (anti-GBM) disease is accompanied by insufficient antigen-specific T regulatory cells (Tregs) and clonally expanded antigen-specific T conventional cells (Tconvs). In particular, this applied to the immunodominant T cell auto- epitope of type IV collagen, α3(IV)NC1135-145 , presented by HLA-DR15. Here, we investigated whether Tregs engineered to express GBM-T cell receptors (TCR) specific for α3(IV)NC1135- 145 better suppress autoimmunity.

View Article and Find Full Text PDF

Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis.

Biochem Biophys Res Commun

January 2025

Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

PKM2-mediated collagen XVII expression is critical for wound repair.

JCI Insight

January 2025

Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chronic wounds have emerged as a tough clinical challenge. An improved understanding of wound healing mechanisms is paramount. Collagen XVII (COL17), a pivotal constituent of hemidesmosomes, holds considerable promise for regulating epidermal cell adhesion to the basement membrane, as well as for epidermal cell motility and self-renewal of epidermal stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!