Our laboratory demonstrated previously that spontaneously hypertensive rats (SHR) exhibited an elevated basal Fos expression in the nucleus tractus solitarii (NTS), the terminal site for primary baroreceptor afferents, and that Fos protein is required for the re-expression of angiotensin subtype 1 receptor (AT1R) mRNA in the NTS after baroreceptor activation. The present study evaluated the hypothesis that this re-expression of AT1R is augmented in SHR and is promoted by the heightened Fos expression. Reverse transcription-polymerase chain reaction analysis revealed that baroreceptor activation via sustained increase in systemic arterial pressure resulted in a discernible reduction in the expression of AT1R mRNA at the dorsomedial medulla of SHR and normotensive Wistar-Kyoto rats. However, SHR manifested an appreciably larger magnitude of decline, followed by a faster time course of re-expression in AT1R mRNA. Parallel findings were obtained from the pressor response induced by microinjection unilaterally of angiotensin II (40 pmol) into the NTS. Whereas the re-expression of AT1R at both transcriptional and functional expression levels after baroreceptor activation was discernibly blunted by prior bilateral application into the NTS of an antisense c-fos oligonucleotide (50 pmol), the suppression in SHR was again significantly more intense. Control pretreatment with the corresponding sense or scrambled c-fos oligonucleotide was ineffective. We conclude that the heightened Fos expression in SHR is causatively related to the augmented re-expression of AT1R in the NTS at both transcriptional and functional levels.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.hyp.0000029241.33421.ebDOI Listing

Publication Analysis

Top Keywords

re-expression at1r
16
fos expression
12
at1r mrna
12
baroreceptor activation
12
angiotensin subtype
8
subtype receptor
8
nucleus tractus
8
tractus solitarii
8
spontaneously hypertensive
8
hypertensive rats
8

Similar Publications

Initially identified as monomers, G protein-coupled receptors (GPCRs) can also form functional homo- and heterodimers that act as distinct signaling hubs for cellular signal integration. We previously found that the angiotensin II (Ang II) type 1 receptor (AT1R) and the prostaglandin F2α (PGF2α) receptor (FP), both important in the control of smooth muscle contractility, form such a functional heterodimeric complex in HEK 293 and vascular smooth muscle cells. Here, we hypothesize that both Ang II- and PGF2α-induced activation of the AT1R/FP dimer, or the parent receptors alone, differentially regulate signaling by distinct patterns of β-arrestin recruitment.

View Article and Find Full Text PDF

So far, liver fibrosis still has no clinically-approved treatment. The loss of stored vitamin-A (V) in hepatic stellate cells (HSCs), the main regulators to hepatic fibrosis, can be applied as a mechanism for their targeting. Valsartan is a good candidate for this approach; it is a marketed oral-therapy with inverse- and partial-agonistic activity to the over-expressed angiotensin-II type1 receptor (AT1R) and depleted nuclear peroxisome proliferator-activated receptor-gamma (PPAR-γ), respectively, in activated HSCs.

View Article and Find Full Text PDF

Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity.

Neurotherapeutics

April 2018

National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China.

Methamphetamine (METH) abuse has become a major public health concern worldwide without approved pharmacotherapies. The brain renin-angiotensin system (RAS) is involved in the regulation of neuronal function as well as neurological disorders. Angiotensin II (Ang II), which interacts with Ang II type 1 receptor (AT-R) in the brain, plays an important role as a neuromodulator in dopaminergic transmission.

View Article and Find Full Text PDF

Our laboratory demonstrated previously that spontaneously hypertensive rats (SHR) exhibited an elevated basal Fos expression in the nucleus tractus solitarii (NTS), the terminal site for primary baroreceptor afferents, and that Fos protein is required for the re-expression of angiotensin subtype 1 receptor (AT1R) mRNA in the NTS after baroreceptor activation. The present study evaluated the hypothesis that this re-expression of AT1R is augmented in SHR and is promoted by the heightened Fos expression. Reverse transcription-polymerase chain reaction analysis revealed that baroreceptor activation via sustained increase in systemic arterial pressure resulted in a discernible reduction in the expression of AT1R mRNA at the dorsomedial medulla of SHR and normotensive Wistar-Kyoto rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!