Glaucoma is a progressive optic neuropathy with characteristic structural changes in the optic nerve head reflected in the visual field. The visual-field sensitivity test is commonly used in a clinical setting to evaluate glaucoma. Standard automated perimetry (SAP) is a common computerized visual-field test whose output is amenable to machine learning. We compared the performance of a number of machine learning algorithms with STATPAC indexes mean deviation, pattern standard deviation, and corrected pattern standard deviation. The machine learning algorithms studied included multilayer perceptron (MLP), support vector machine (SVM), and linear (LDA) and quadratic discriminant analysis (QDA), Parzen window, mixture of Gaussian (MOG), and mixture of generalized Gaussian (MGG). MLP and SVM are classifiers that work directly on the decision boundary and fall under the discriminative paradigm. Generative classifiers, which first model the data probability density and then perform classification via Bayes' rule, usually give deeper insight into the structure of the data space. We have applied MOG, MGG, LDA, QDA, and Parzen window to the classification of glaucoma from SAP. Performance of the various classifiers was compared by the areas under their receiver operating characteristic curves and by sensitivities (true-positive rates) at chosen specificities (true-negative rates). The machine-learning-type classifiers showed improved performance over the best indexes from STATPAC. Forward-selection and backward-elimination methodology further improved the classification rate and also has the potential to reduce testing time by diminishing the number of visual-field location measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2002.802012 | DOI Listing |
This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.
View Article and Find Full Text PDFPLoS One
January 2025
Academy of Fine Arts, Jiangsu Second Normal University, Nanjing, China.
Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.
View Article and Find Full Text PDFPLoS One
January 2025
School of Economics and Trade, Guangzhou Xinhua University, Dongguan, China.
Stock price prediction is a challenging research domain. The long short-term memory neural network (LSTM) widely employed in stock price prediction due to its ability to address long-term dependence and transmission of historical time signals in time series data. However, manual tuning of LSTM parameters significantly impacts model performance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Structural and Molecular Biology, University College London, London, United Kingdom.
Previous studies have highlighted the inherent subjectivity, complexity, and challenges associated with research quality leading to fragmented findings. We identified determinants of research publication quality in terms of research activities and the use of information and communication technologies by employing an interdisciplinary approach. We conducted web-based surveys among academic scientists and applied machine learning techniques to model behaviors during and after the COVID-19 pandemic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!