Indirect evidence for the participation of cytochrome P450 (P450) in the microsomal N-oxygenation of primary and N-substituted amine functions is presented by studies employing diagnostic modifiers of the hemoprotein system as well as immunochemical approaches. Experiments with recombinant hemoproteins or isozymes purified from the tissues of various animal species support the results obtained by the inhibitor assays. Amine substrates and the redox proteins of the microsomal electron transfer chain reveal to be mutually beneficial in interactions with P450s. Numerous N-substituted amines undergo P450-catalyzed N-oxidative transformation despite the presence of accessible alpha-C hydrogens in these structures rather thought to favor N-dealkylation. In these instances, stabilization of the initially formed aminium radicals by the specific active site orientation of the particular P450s obviously permits oxygen rebound. Apart from common iron-oxenoid chemistry involving a (FeO)3+ species, iron-bound hydroperoxide, (FeO2H)3+, appears to act as an electrophilic oxidant with certain N-substituted amines and P450 subforms. Generally, P450-mediated N-oxygenation of amines can produce cytotoxic and mutagenic metabolites, but equally can well yield hydrophilic products, that are readily excreted and thus promote detoxication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/dmr-120005646 | DOI Listing |
Sci Rep
September 2021
Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran.
A new nano-scale Cu@salicylaldehyde-modified-chitosan (Cu@Sal-CS) was synthesized through a green, eco-friendly and cost-effective technique. The prepared catalyst was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), and inductively coupled plasma (ICP) analysis. The synthesized Cu@Sal-CS catalyst indicated its performance in the C-O and C-N oxidative coupling using the reaction of 1,3-dicarbonyl derivatives/2- substituted phenols with amides for the preparation of carbamates, as well as in the reaction of aldehydes and various amines in the synthesis of amides.
View Article and Find Full Text PDFDrug Metab Rev
August 2002
Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
Indirect evidence for the participation of cytochrome P450 (P450) in the microsomal N-oxygenation of primary and N-substituted amine functions is presented by studies employing diagnostic modifiers of the hemoprotein system as well as immunochemical approaches. Experiments with recombinant hemoproteins or isozymes purified from the tissues of various animal species support the results obtained by the inhibitor assays. Amine substrates and the redox proteins of the microsomal electron transfer chain reveal to be mutually beneficial in interactions with P450s.
View Article and Find Full Text PDFCancer Res
October 1999
Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge 02139, USA.
2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), a major heterocyclic aromatic amine (HAA) formed in cooked meats, is metabolically transformed to mutagenic/carcinogenic intermediates. Cytochrome P4501A2 (CYP1A2)-mediated N-hydroxylation followed by phase II O-esterification by N-acetyltransferase (NAT2) are generally regarded as activation processes in which MeIQx and other HAAs are converted to genotoxic species. In this study, we determined the relationship between the activities of these two enzymes and the urinary excretion level of the N2-glucuronide conjugate of 2-hydroxyamino-MeIQx--N2-(beta-1-glucosiduronyl)-2-hydroxyam ino-3,8-dimethylimidazo[4,5-f]quinoxaline (N-OH-MeIQx-N2-glucuronide)--among healthy subjects fed a uniform diet containing high-temperature cooked meat.
View Article and Find Full Text PDFHum Exp Toxicol
August 1997
Walther-Straub-Institut für Pharmokologie und Toxikologie, Universität München, Germany.
There exists a diversity of pathways in mammalian cells serving to activate primary aromatic amines. 1 N-Oxidative mixed-function turnover usually involves participation of the cytochrome P450 superfamily, while catalysis by the flavin-containing monooxygenases is restricted to a few amines capable of forming imine tautomers. Surprisingly, haemoglobin metabolizes cytotoxic and carcinogenic arylamines via a monooxygenase-like mechanism, but peroxygenase activity is also operative.
View Article and Find Full Text PDFIndirect evidence of the participation of cytochrome P-450 (P-450) in the microsomal N-oxygenation of secondary and tertiary nitrogen functions is presented by studies employing diagnostic modifiers of the hemoprotein system as well as antibodies directed toward the diverse P-450 isoforms and NADPH-cytochrome P-450 reductase. Experiments with recombinant hemoproteins or P-450 isozymes directly purified from the tissues of various animal species support the results obtained by the inhibitor assays. Although the intermediacy of aminium radicals is thought to be restrictive to P-450-catalyzed N-oxygenation of secondary and tertiary amine groups bearing accessible hydrogens on the alpha-carbon, numerous exceptions to this rule are documented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!