Is hemochromatosis a risk factor for Alzheimer's disease?

J Alzheimers Dis

Department of Neuroscience & Anatomy, Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey PA, USA.

Published: October 2001

Excess iron accumulation in the brain is a consistent observation in Alzheimer's Disease. Iron affects amyloid precursor protein (AbetaPP) processing and promotes deposition of Abeta. Iron is also among the most potent biological toxins because of its ability to react with oxygen to form reactive oxygen species. Consequently, elucidation of the mechanisms associated with maintaining brain iron homeostasis is fundamentally important to understanding the underlying pathogenesis in AD. The iron overload disorder, Hemochromatosis, is the most common genetic disorder (1:200) so a significant percentage of AD patients can be expected to carry this mutation. Heterozygotes for this mutation also have an increased, but sub-clinical iron burden. Given the high percentage of the population who are at significant risk for iron overload, we propose that the hemochromatosis mutation be considered as a confounding factor when evaluating the contribution of genetic associations with AD and treatment strategies and efficacy. Two recent papers and new evidence presented here that the protein associated with hemochromatosis is expressed on blood vessels, choroid plexus and the ependymal cells in the brain are offered as support for this proposal.

Download full-text PDF

Source
http://dx.doi.org/10.3233/jad-2001-3506DOI Listing

Publication Analysis

Top Keywords

iron overload
8
iron
7
hemochromatosis
4
hemochromatosis risk
4
risk factor
4
factor alzheimer's
4
alzheimer's disease?
4
disease? excess
4
excess iron
4
iron accumulation
4

Similar Publications

Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics.

Biology (Basel)

January 2025

Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea.

View Article and Find Full Text PDF

Excessive iron deposition can lead to ferroptosis, a form of iron-dependent cell death detrimental to neuronal survival. Microglia have been identified as having a high capacity for iron deposition, yet it remains unclear whether microglia undergo ferroptosis while phagocytosing excessive amounts of iron after spinal cord injury (SCI). Here, we observed scattered iron around the epicenter of the injured spinal cord at 7 days post-injury (dpi) in mice, which then accumulated in the lesion core at 14 dpi.

View Article and Find Full Text PDF

Glutathione-scavenging natural-derived ferroptotic nano-amplifiers strengthen tumor therapy through aggravating iron overload and lipid peroxidation.

J Control Release

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China. Electronic address:

Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!