In the filamentous fungus Aspergillus fumigatus, the vast majority of the cell-wall-associated proteins are secreted proteins that are in transit in the cell wall. These proteins can be solubilized by detergents and reducing agents. Incubation of a SDS/beta-mercaptoethanol-treated cell-wall extract with various recombinant enzymes that hydrolyse cell-wall polysaccharides resulted in the release of a unique protein in minute amounts only after incubation of the cell wall in the presence of 1,3-beta-glucanase. Sequence analysis and biochemical studies showed that this glycoprotein, with an apparent molecular mass of 80 kDa, was an acid phosphatase (PhoAp) that was active on both phosphate monoesters and phosphate diesters. PhoAp is a glycosylphosphatidylinositol-anchored protein that was recovered in the culture filtrate and cell-wall fraction of A. fumigatus after cleavage of its anchor. It is also a phosphate-repressible acid phosphatase. The absence of PhoAp from a phosphate-rich medium was not associated with a reduction in fungal growth, indicating that this cell-wall-associated protein does not play a role in the morphogenesis of A. fumigatus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-148-9-2819 | DOI Listing |
Calcif Tissue Int
January 2025
Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.
View Article and Find Full Text PDFAdv Biol Regul
January 2025
Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA.
Phosphatidic acid phosphatase, a conserved eukaryotic enzyme that catalyzes the Mg-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol, has emerged as a vital regulator of lipid homeostasis. By controlling the balance of phosphatidic acid and diacylglycerol, the enzyme governs the use of the lipids for synthesis of the storage lipid triacylglycerol and the membrane phospholipids needed for cell growth. The mutational, biochemical, and cellular analyses of yeast phosphatidic acid phosphatase have provided insights into the structural determinants of enzyme function with the understanding of its regulation by phosphorylation and dephosphorylation.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
Alkaline phosphatase (ALP) is a critical biomarker associated with various physiological and pathological processes, making its detection essential for disease diagnosis and biomedical research. In this study, we developed a novel, simple, and portable visual quantification method for ALP activity in cells using an efficient CuZnS nanomaterial with peroxidase-like properties, integrated into a smartphone-based platform for enhanced usability. The CuZnS nanomaterial catalyzes the breakdown of H₂O₂, generating ·OH radicals that oxidize the colorless substrate TMB into blue oxTMB, which is subsequently reduced back to TMB by ascorbic acid (AA).
View Article and Find Full Text PDFCurr Opin Gastroenterol
January 2025
Schiff Center for Liver Diseases, University of Miami Miller School of Medicine.
Purpose Of Review: This review explores the emerging concept of "deep response" in primary biliary cholangitis (PBC), defined by the normalization of biochemical markers, particularly alkaline phosphatase and bilirubin. It examines its potential as a new standard for disease management and its implications for long-term patient outcomes, health policies, and clinical decision-making.
Recent Findings: Recent studies suggest that achieving a deep response significantly improves long-term outcomes in some patients with PBC.
Bioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!