beta-Glycosidases are fundamental, widely conserved enzymes. Those from hyperthermophiles exhibit unusual stabilities toward various perturbants. Previous work with homotetrameric beta-glycosidase from hyperthermophilic Sulfolobus solfataricus (M(r) 226,760) has shown that addition of 0.05-0.1% SDS was associated with minimal secondary structure perturbations and increased activity. This work addresses the effects of SDS on beta-glycosidase quaternary structure. In 0.1-1% SDS, the enzyme was dimeric, as determined by Ferguson analysis of transverse-gradient polyacrylamide gels. The catalytic activity of the beta-glycosidase dimer in SDS was determined by in-gel assay. A minor decrease of thermal stability in SDS was observed after exposure to temperatures up to 80 degrees C for 1 h. An analysis of beta-glycosidase crystal structure showed different changes in solvent-accessible surface area on going from the tetramer to the two possible dimers (A-C and A-D). Energy minimization and molecular dynamics calculations showed that the A-C dimer, exhibiting the lowest exposed surface area, was more stabilized by a network of polar interactions. The charge distribution around the A-C interface was characterized by a local short range anisotropy, resulting in an unfavorable interaction with SDS. This paper provides a detailed description of an SDS-resistant inter-monomeric interface, which may help understand similar interfaces involved in important biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M206761200 | DOI Listing |
Biotechnol Appl Biochem
July 2020
Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy.
The aim of this paper is to make the point on the fortieth years study on the β-glycosidase from Sulfolobus solfataricus. This enzyme represents one of the thermophilic biocatalysts, which is more extensively studied as witnessed by the numerous literature reports available since 1980. Comprehensive biochemical studies highlighted its broad substrate specificity for β-d-galacto-, gluco-, and fuco-sides and also showed its remarkable exo-glucosidase and transglycosidase activities.
View Article and Find Full Text PDFJ Biol Chem
November 2002
Istituto di Endocrinologia e Oncologia Sperimentale del CNR and Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy.
beta-Glycosidases are fundamental, widely conserved enzymes. Those from hyperthermophiles exhibit unusual stabilities toward various perturbants. Previous work with homotetrameric beta-glycosidase from hyperthermophilic Sulfolobus solfataricus (M(r) 226,760) has shown that addition of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!