Contribution of the putative heparan sulfate-binding motif BBXB of RANTES to transendothelial migration.

Glycobiology

The Applied Immunobiology Group, Department of Surgery, The Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK.

Published: September 2002

The chemokines are a family of small chemoattractant proteins that have a range of functions, including activation and promotion of vectorial migration of leukocytes. Regulation on activation, normal T cell expressed and secreted (RANTES; CCL5), a member of the CC-chemokine subfamily, has been implicated in a variety of immune responses. In addition to the interaction of CC-chemokines with their cognate cell-surface receptors, it is known that they also bind to glycosaminoglycans (GAGs), including heparan sulfate. This potential for binding to GAG components of proteoglycans on the cell surface or within the extracellular matrix might allow formation of the stable chemokine concentration gradients necessary for leukocyte chemotaxis. In this study, we created a panel of mutant RANTES molecules containing neutral amino acid substitutions within putative, basic GAG-binding domains. Despite showing reduced binding to GAGs, it was found that each mutant containing a single amino acid substitution induced a similar leukocyte chemotactic response within a concentration gradient generated by free solute diffusion. However, we found that the mutant K45A had a significantly reduced potential to stimulate chemotaxis across a monolayer of microvascular endothelial cells. Significantly, this mutant bound to the CCR5 receptor and showed a potential to mobilize Ca(2+) with an affinity similar to the wild-type protein. These results show that the interaction between RANTES and GAGs is not necessary for specific receptor engagement, signal transduction, or leukocyte migration. However, this interaction is required for the induction of efficient chemotaxis through the extracellular matrix between confluent endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwf069DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
8
amino acid
8
endothelial cells
8
contribution putative
4
putative heparan
4
heparan sulfate-binding
4
sulfate-binding motif
4
motif bbxb
4
rantes
4
bbxb rantes
4

Similar Publications

Article Synopsis
  • Hepatitis B virus (HBV) is a major global health concern linked to liver disease and cancer, with research focusing on genetic factors that affect its evolution.
  • Recent studies highlighted the ECM1 gene, specifically two polymorphisms (rs3834087 and rs3754217), which may influence HBV pathogenesis, particularly in an African cohort analyzed in this research.
  • The study found that the heterozygous genotype of rs3754217 appears to protect against chronic hepatitis, suggesting that certain genetic variations may impact the severity of the disease in infected individuals.
View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint therapies have revolutionized cancer treatment but face challenges like low response rates and drug resistance, highlighting the need for a better understanding of the tumor microenvironment (TME).
  • Recent studies show that biomechanical forces within the TME significantly impact immune responses and tumor progression, indicating that manipulating these forces could enhance immune activation against tumors.
  • The review discusses key biomechanical mechanisms, the role of the extracellular matrix, and potential clinical applications, aiming to provide insights for discovering new therapeutic targets.
View Article and Find Full Text PDF

Cytokines, chemokines and growth factors involved in keloids pathogenesis.

An Bras Dermatol

January 2025

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Keloid is a common fibrotic disease, which is difficult to treat. It often causes itching and pain, which greatly disturbs patients in their work and daily life and causing difficulties in social interaction. Its pathogenesis is not clear, but may be related to several aspects: genetic susceptibility, environmental, immunological and endocrine factors, trauma and tension.

View Article and Find Full Text PDF

Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms.

Biochim Biophys Acta Mol Basis Dis

January 2025

Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.

Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.

View Article and Find Full Text PDF

Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!