Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA-based immunization may be of prophylactic and therapeutic value for hepatitis C virus (HCV) infection. In efforts to improve the immunogenicity of a plasmid expressing the second envelope protein (E2) of HCV, we evaluated in mice the role of the antigen localization and demonstrated that membrane-bound and secreted forms induced higher titers of E2-specific antibodies, as well as earlier and higher seroconversion rates, than the intracellular form, but all three forms induced strong CTL. We also investigated whether E2-specific antibody responses could be enhanced by CpG optimization of the plasmid backbone and showed that removal of neutralizing CpG dinucleotides did not have a significant effect but addition of 64 immunostimulatory CpG motifs significantly enhanced anti-E2 titers. These results may have implications for the design and development of HCV DNA vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0264-410x(02)00304-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!